BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1321 related articles for article (PubMed ID: 17718513)

  • 61. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.
    Armas P; Nasif S; Calcaterra NB
    J Cell Biochem; 2008 Feb; 103(3):1013-36. PubMed ID: 17661353
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Crystallographic studies of quadruplex nucleic acids.
    Campbell NH; Parkinson GN
    Methods; 2007 Dec; 43(4):252-63. PubMed ID: 17967696
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bioinformatics approaches to quadruplex sequence location.
    Todd AK
    Methods; 2007 Dec; 43(4):246-51. PubMed ID: 17967695
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structure and K+ ion-dependent stability of a parallel-stranded DNA quadruplex containing a core A-tetrad.
    Searle MS; Williams HE; Gallagher CT; Grant RJ; Stevens MF
    Org Biomol Chem; 2004 Mar; 2(6):810-2. PubMed ID: 15007406
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phenanthroline-bis-oxazole ligands for binding and stabilization of G-quadruplexes.
    Medeiros-Silva J; Guédin A; Salgado GF; Mergny JL; Queiroz JA; Cabrita EJ; Cruz C
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1281-1292. PubMed ID: 27865994
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Targeting the G-quadruplex-forming region near the P1 promoter in the human BCL-2 gene with the cationic porphyrin TMPyP4 and with the complementary C-rich strand.
    Del Toro M; Bucek P; Aviñó A; Jaumot J; González C; Eritja R; Gargallo R
    Biochimie; 2009 Jul; 91(7):894-902. PubMed ID: 19401211
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural diversity and extreme stability of unimolecular Oxytricha nova telomeric G-quadruplex.
    Lee JY; Yoon J; Kihm HW; Kim DS
    Biochemistry; 2008 Mar; 47(11):3389-96. PubMed ID: 18298084
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Furan based cyclic homo-oligopeptides bind G-quadruplex selectively and repress c-MYC transcription.
    Agarwal T; Roy S; Chakraborty TK; Maiti S
    Bioorg Med Chem Lett; 2010 Aug; 20(15):4346-9. PubMed ID: 20615700
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inhibition of cell proliferation by quindoline derivative (SYUIQ-05) through its preferential interaction with c-myc promoter G-quadruplex.
    Ou TM; Lin J; Lu YJ; Hou JQ; Tan JH; Chen SH; Li Z; Li YP; Li D; Gu LQ; Huang ZS
    J Med Chem; 2011 Aug; 54(16):5671-9. PubMed ID: 21774525
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Unfolding of G-quadruplexes: energetic, and ion and water contributions of G-quartet stacking.
    Olsen CM; Gmeiner WH; Marky LA
    J Phys Chem B; 2006 Apr; 110(13):6962-9. PubMed ID: 16571009
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spontaneous DNA lesions modulate DNA structural transitions occurring at nuclease hypersensitive element III(1) of the human c-myc proto-oncogene.
    Beckett J; Burns J; Broxson C; Tornaletti S
    Biochemistry; 2012 Jul; 51(26):5257-68. PubMed ID: 22667821
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents.
    Sun D; Guo K; Rusche JJ; Hurley LH
    Nucleic Acids Res; 2005; 33(18):6070-80. PubMed ID: 16239639
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biophysical properties of quadruple helices of modified human telomeric DNA.
    Petraccone L; Erra E; Esposito V; Randazzo A; Galeone A; Barone G; Giancola C
    Biopolymers; 2005 Feb; 77(2):75-85. PubMed ID: 15614794
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization.
    Ambrus A; Chen D; Dai J; Jones RA; Yang D
    Biochemistry; 2005 Feb; 44(6):2048-58. PubMed ID: 15697230
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of triethylene tetraamine on the G-quadruplex structure in the human c-myc promoter.
    Yin F; Liu J; Deng X; Wang J
    J Biochem; 2007 May; 141(5):669-74. PubMed ID: 17339229
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Specific DNA G-quadruplexes bind to ethanolamines.
    Cheng X; Liu X; Bing T; Zhao R; Xiong S; Shangguan D
    Biopolymers; 2009 Oct; 91(10):874-83. PubMed ID: 19582835
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Loop and backbone modifications of peptide nucleic acid improve g-quadruplex binding selectivity.
    Lusvarghi S; Murphy CT; Roy S; Tanious FA; Sacui I; Wilson WD; Ly DH; Armitage BA
    J Am Chem Soc; 2009 Dec; 131(51):18415-24. PubMed ID: 19947597
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis of quadruplex-forming tetra-end-linked oligonucleotides: effects of the linker size on quadruplex topology and stability.
    Oliviero G; Borbone N; Amato J; D'Errico S; Galeone A; Piccialli G; Varra M; Mayol L
    Biopolymers; 2009 Jun; 91(6):466-77. PubMed ID: 19189376
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region.
    Onyshchenko MI; Gaynutdinov TI; Englund EA; Appella DH; Neumann RD; Panyutin IG
    Nucleic Acids Res; 2011 Sep; 39(16):7114-23. PubMed ID: 21593130
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Targeting the inverted CCAAT box 2 in the topoisomerase IIalpha promoter by JH-37, an imidazole-pyrrole polyamide hairpin: design, synthesis, molecular biology, and biophysical studies.
    Henry JA; Le NM; Nguyen B; Howard CM; Bailey SL; Horick SM; Buchmueller KL; Kotecha M; Hochhauser D; Hartley JA; Wilson WD; Lee M
    Biochemistry; 2004 Sep; 43(38):12249-57. PubMed ID: 15379563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 67.