These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17718515)

  • 1. Caught bending the A-rule: crystal structures of translesion DNA synthesis with a non-natural nucleotide.
    Zahn KE; Belrhali H; Wallace SS; Doublié S
    Biochemistry; 2007 Sep; 46(37):10551-61. PubMed ID: 17718515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the contributions of desolvation and base-stacking during translesion DNA synthesis.
    Zhang X; Lee I; Berdis AJ
    Org Biomol Chem; 2004 Jun; 2(12):1703-11. PubMed ID: 15188037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site.
    Hogg M; Wallace SS; Doublié S
    EMBO J; 2004 Apr; 23(7):1483-93. PubMed ID: 15057283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η.
    Patra A; Zhang Q; Lei L; Su Y; Egli M; Guengerich FP
    J Biol Chem; 2015 Mar; 290(13):8028-38. PubMed ID: 25666608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid templating mechanisms in selection of nucleotides opposite abasic sites by a family a DNA polymerase.
    Obeid S; Welte W; Diederichs K; Marx A
    J Biol Chem; 2012 Apr; 287(17):14099-108. PubMed ID: 22318723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity.
    Zhong X; Pedersen LC; Kunkel TA
    Nucleic Acids Res; 2008 Jul; 36(12):3892-904. PubMed ID: 18503083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the contribution of base stacking during translesion DNA replication.
    Reineks EZ; Berdis AJ
    Biochemistry; 2004 Jan; 43(2):393-404. PubMed ID: 14717593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family.
    Hogg M; Aller P; Konigsberg W; Wallace SS; Doublié S
    J Biol Chem; 2007 Jan; 282(2):1432-44. PubMed ID: 17098747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of base stacking and sequence context in the inhibition of yeast DNA polymerase eta by pyrene nucleotide.
    Hwang H; Taylor JS
    Biochemistry; 2004 Nov; 43(46):14612-23. PubMed ID: 15544332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The miscoding potential of 5-hydroxycytosine arises due to template instability in the replicative polymerase active site.
    Zahn KE; Averill A; Wallace SS; Doublié S
    Biochemistry; 2011 Nov; 50(47):10350-8. PubMed ID: 22026756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of partial charge interactions and base stacking to the efficiency of primer extension at and beyond abasic sites in DNA.
    Xia S; Vashishtha A; Bulkley D; Eom SH; Wang J; Konigsberg WH
    Biochemistry; 2012 Jun; 51(24):4922-31. PubMed ID: 22630605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA synthesis across an abasic lesion by human DNA polymerase iota.
    Nair DT; Johnson RE; Prakash L; Prakash S; Aggarwal AK
    Structure; 2009 Apr; 17(4):530-7. PubMed ID: 19368886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro effects of a C4'-oxidized abasic site on DNA polymerases.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF
    Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational attempts to optimize non-natural nucleotides for selective incorporation opposite an abasic site.
    Zhang X; Donnelly A; Lee I; Berdis AJ
    Biochemistry; 2006 Nov; 45(44):13293-303. PubMed ID: 17073450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA.
    Vineyard D; Zhang X; Donnelly A; Lee I; Berdis AJ
    Org Biomol Chem; 2007 Nov; 5(22):3623-30. PubMed ID: 17971991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing minor groove hydrogen bonding interactions between RB69 DNA polymerase and DNA.
    Xia S; Christian TD; Wang J; Konigsberg WH
    Biochemistry; 2012 May; 51(21):4343-53. PubMed ID: 22571765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrene nucleotide as a mechanistic probe: evidence for a transient abasic site-like intermediate in the bypass of dipyrimidine photoproducts by T7 DNA polymerase.
    Sun L; Wang M; Kool ET; Taylor JS
    Biochemistry; 2000 Nov; 39(47):14603-10. PubMed ID: 11087416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abasic translesion synthesis by DNA polymerase beta violates the "A-rule". Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts.
    Efrati E; Tocco G; Eritja R; Wilson SH; Goodman MF
    J Biol Chem; 1997 Jan; 272(4):2559-69. PubMed ID: 8999973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potential chemotherapeutic strategy for the selective inhibition of promutagenic DNA synthesis by nonnatural nucleotides.
    Zhang X; Lee I; Berdis AJ
    Biochemistry; 2005 Oct; 44(39):13111-21. PubMed ID: 16185079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions.
    Eckert KA; Opresko PL
    Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.