These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria. Doser B; Lambrecht DS; Kussmann J; Ochsenfeld C J Chem Phys; 2009 Feb; 130(6):064107. PubMed ID: 19222267 [TBL] [Abstract][Full Text] [Related]
3. On the nature of the Møller-Plesset critical point. Sergeev AV; Goodson DZ; Wheeler SE; Allen WD J Chem Phys; 2005 Aug; 123(6):64105. PubMed ID: 16122298 [TBL] [Abstract][Full Text] [Related]
4. Second-order Møller-Plesset calculations on the water molecule using Gaussian-type orbital and Gaussian-type geminal theory. Dahle P; Helgaker T; Jonsson D; Taylor PR Phys Chem Chem Phys; 2008 Jun; 10(23):3377-82. PubMed ID: 18535720 [TBL] [Abstract][Full Text] [Related]
5. Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set. Marsman M; Grüneis A; Paier J; Kresse G J Chem Phys; 2009 May; 130(18):184103. PubMed ID: 19449904 [TBL] [Abstract][Full Text] [Related]
6. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361 [TBL] [Abstract][Full Text] [Related]
7. Tensor factorizations of local second-order Møller-Plesset theory. Yang J; Kurashige Y; Manby FR; Chan GK J Chem Phys; 2011 Jan; 134(4):044123. PubMed ID: 21280703 [TBL] [Abstract][Full Text] [Related]
8. An efficient atomic orbital based second-order Møller-Plesset gradient program. Saebø S; Baker J; Wolinski K; Pulay P J Chem Phys; 2004 Jun; 120(24):11423-31. PubMed ID: 15268176 [TBL] [Abstract][Full Text] [Related]
9. Resolution of the identity atomic orbital Laplace transformed second order Møller-Plesset theory for nonconducting periodic systems. Izmaylov AF; Scuseria GE Phys Chem Chem Phys; 2008 Jun; 10(23):3421-9. PubMed ID: 18535725 [TBL] [Abstract][Full Text] [Related]
10. On the role of higher-order correlation effects on the induction interactions between closed-shell molecules. Korona T Phys Chem Chem Phys; 2007 Dec; 9(45):6004-11. PubMed ID: 18004413 [TBL] [Abstract][Full Text] [Related]
11. Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory. Kurashige Y; Yang J; Chan GK; Manby FR J Chem Phys; 2012 Mar; 136(12):124106. PubMed ID: 22462834 [TBL] [Abstract][Full Text] [Related]
12. Spin-component-scaled Møller-Plesset (SCS-MP) perturbation theory: a generalization of the MP approach with improved properties. Fink RF J Chem Phys; 2010 Nov; 133(17):174113. PubMed ID: 21054012 [TBL] [Abstract][Full Text] [Related]
13. Tighter multipole-based integral estimates and parallel implementation of linear-scaling AO-MP2 theory. Doser B; Lambrecht DS; Ochsenfeld C Phys Chem Chem Phys; 2008 Jun; 10(23):3335-44. PubMed ID: 18535715 [TBL] [Abstract][Full Text] [Related]
14. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements. Höfener S; Bischoff FA; Glöss A; Klopper W Phys Chem Chem Phys; 2008 Jun; 10(23):3390-9. PubMed ID: 18535722 [TBL] [Abstract][Full Text] [Related]
15. Two-level hierarchical parallelization of second-order Møller-Plesset perturbation calculations in divide-and-conquer method. Katouda M; Kobayashi M; Nakai H; Nagase S J Comput Chem; 2011 Oct; 32(13):2756-64. PubMed ID: 21732389 [TBL] [Abstract][Full Text] [Related]
16. Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. Valeev EF Phys Chem Chem Phys; 2008 Jan; 10(1):106-13. PubMed ID: 18075688 [TBL] [Abstract][Full Text] [Related]
17. General orbital invariant MP2-F12 theory. Werner HJ; Adler TB; Manby FR J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584 [TBL] [Abstract][Full Text] [Related]
18. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method. Nagata T; Fedorov DG; Ishimura K; Kitaura K J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093 [TBL] [Abstract][Full Text] [Related]
19. Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. Schütz M; Werner HJ; Lindh R; Manby FR J Chem Phys; 2004 Jul; 121(2):737-50. PubMed ID: 15260600 [TBL] [Abstract][Full Text] [Related]
20. A kinetic energy fitting metric for resolution of the identity second-order Møller-Plesset perturbation theory. Lambrecht DS; Brandhorst K; Miller WH; McCurdy CW; Head-Gordon M J Phys Chem A; 2011 Apr; 115(13):2794-801. PubMed ID: 21391690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]