These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 17718615)

  • 1. Solution of the master equation for Wigner's quasiprobability distribution in phase space for the Brownian motion of a particle in a double well potential.
    Coffey WT; Kalmykov YP; Titov SV
    J Chem Phys; 2007 Aug; 127(7):074502. PubMed ID: 17718615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum effects in the Brownian motion of a particle in a double well potential in the overdamped limit.
    Coffey WT; Kalmykov YP; Titov SV; Cleary L
    J Chem Phys; 2009 Aug; 131(8):084101. PubMed ID: 19725602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wigner function approach to the quantum Brownian motion of a particle in a potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiclassical master equation in Wigners phase space applied to Brownian motion in a periodic potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041117. PubMed ID: 17500875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally activated escape rate for a Brownian particle in a double-well potential for all values of the dissipation.
    Kalmykov YP; Coffey WT; Titov SV
    J Chem Phys; 2006 Jan; 124(2):024107. PubMed ID: 16422571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally activated escape rate for the Brownian motion of a fixed axis rotator in an asymmetrical double-well potential for all values of the dissipation.
    Kalmykov YP; Titov SV; Coffey WT
    J Chem Phys; 2005 Sep; 123(9):94503. PubMed ID: 16164349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial effects in the orientational relaxation of rodlike molecules in a uniaxial potential.
    Kalmykov YP; Titov SV; Coffey WT
    J Chem Phys; 2009 Feb; 130(6):064110. PubMed ID: 19222270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial effects in the fractional translational diffusion of a Brownian particle in a double-well potential.
    Kalmykov YP; Coffey WT; Titov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031101. PubMed ID: 17500662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally activated escape rate for the Brownian motion of a fixed axis rotator in a double well potential for all values of the dissipation.
    Coffey WT; Kalmykov YP; Titov SV
    J Chem Phys; 2004 May; 120(19):9199-211. PubMed ID: 15267857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial and bias effects in the rotational brownian motion of rodlike molecules in a uniaxial potential.
    Kalmykov YP; Titov SV; Coffey WT
    J Chem Phys; 2011 Jan; 134(4):044530. PubMed ID: 21280771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution of quantum Langevin equation: approximations, theoretical and numerical aspects.
    Banerjee D; Bag BC; Banik SK; Ray DS
    J Chem Phys; 2004 May; 120(19):8960-72. PubMed ID: 15267831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Velocity dependence of friction and Kramers relaxation rates.
    Gelin MF; Kosov DS
    J Chem Phys; 2007 Jun; 126(24):244501. PubMed ID: 17614558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantum equation of motion for chemical reaction systems on an adiabatic double-well potential surface in solution based on the framework of mixed quantum-classical molecular dynamics.
    Yamada A; Okazaki S
    J Chem Phys; 2008 Jan; 128(4):044507. PubMed ID: 18247969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approach to quantum Kramers' equation and barrier crossing dynamics.
    Banerjee D; Bag BC; Banik SK; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021109. PubMed ID: 11863505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smoluchowski equation approach for quantum Brownian motion in a tilted periodic potential.
    Coffey WT; Kalmykov YP; Titov SV; Cleary L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031114. PubMed ID: 18851000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-Markovian theory of open systems in classical limit.
    Neufeld AA
    J Chem Phys; 2004 Aug; 121(6):2542-52. PubMed ID: 15281851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for the brownian motion in a potential. II. The matrix continued fraction approach.
    Kalmykov YP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):227-36. PubMed ID: 11088456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional diffusion in a periodic potential: Overdamped and inertia corrected solutions for the spectrum of the velocity correlation function.
    Kalmykov YP; Titov SV; Coffey WT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041101. PubMed ID: 22680414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.
    Banik SK; Bag BC; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.