These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 17719052)

  • 61. Thermodynamic modeling of protein retention in mixed-mode chromatography: An extended model for isocratic and dual gradient elution chromatography.
    Lee YF; Graalfs H; Frech C
    J Chromatogr A; 2016 Sep; 1464():87-101. PubMed ID: 27554024
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Surfactant coated graphitic carbon based stationary phases for anion-exchange chromatography.
    Chambers SD; Lucy CA
    J Chromatogr A; 2007 Dec; 1176(1-2):178-84. PubMed ID: 18036533
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ion chromatography of azide in pharmaceutical protein samples with high chloride concentration using suppressed conductivity detection.
    Vinković K; Drevenkar V
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Mar; 864(1-2):102-8. PubMed ID: 18308648
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of ion chromatography columns based on hydrophobicity and hydroxide eluent strength.
    Liang C; Lucy CA
    J Chromatogr A; 2010 Dec; 1217(52):8154-60. PubMed ID: 21106199
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Development of retention mechanism for the separation of carboxylic acids and inorganic anions in cryptand-based ion chromatography.
    Lukács D; Horváth K; Hajós P
    J Chromatogr A; 2020 Jun; 1621():461066. PubMed ID: 32299623
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: a thermodynamic interpretation.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Jan; 1216(1):63-78. PubMed ID: 19054520
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Theoretical background of monolithic short layer ion-exchange chromatography for separation of charged large biomolecules or bioparticles.
    Yamamoto S; Yoshimoto N; Nishizumi Y
    J Chromatogr A; 2009 Mar; 1216(13):2612-5. PubMed ID: 19211103
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Poly(1-allylimidazole)-grafted silica, a new specific stationary phase for reversed-phase and anion-exchange liquid chromatography.
    Sun M; Qiu H; Wang L; Liu X; Jiang S
    J Chromatogr A; 2009 May; 1216(18):3904-9. PubMed ID: 19296959
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Determination of iodide in seawater samples by ion chromatography with chemically-bonded poly(ethylene glycol) stationary phase.
    Rong L; Lim LW; Takeuchi T
    J Chromatogr A; 2006 Sep; 1128(1-2):68-72. PubMed ID: 16837001
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin.
    Haghsheno R; Mohebbi A; Hashemipour H; Sarrafi A
    J Hazard Mater; 2009 Jul; 166(2-3):961-6. PubMed ID: 19135783
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Development of an ion chromatographic gradient retention model from isocratic elution experiments.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S
    J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Removal of chloride ion from aqueous solution by ZnAl-NO(3) layered double hydroxides as anion-exchanger.
    Lv L; Sun P; Gu Z; Du H; Pang X; Tao X; Xu R; Xu L
    J Hazard Mater; 2009 Jan; 161(2-3):1444-9. PubMed ID: 18571847
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Separation of inorganic anions on a high capacity porous polymeric monolithic column and application to direct determination of anions in seawater.
    Evenhuis CJ; Buchberger W; Hilder EF; Flook KJ; Pohl CA; Nesterenko PN; Haddad PR
    J Sep Sci; 2008 Aug; 31(14):2598-604. PubMed ID: 18618468
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stationary phase-related investigations of quinine-based zwitterionic chiral stationary phases operated in anion-, cation-, and zwitterion-exchange modes.
    Hoffmann CV; Reischl R; Maier NM; Lämmerhofer M; Lindner W
    J Chromatogr A; 2009 Feb; 1216(7):1147-56. PubMed ID: 19144346
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhanced methodology for porting ion chromatography retention data.
    Park SH; Shellie RA; Dicinoski GW; Schuster G; Talebi M; Haddad PR; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2016 Mar; 1436():59-63. PubMed ID: 26860051
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Simultaneous separation of inorganic anions and metal-citrate complexes on a zwitterionic stationary phase with on-column complexation.
    Nesterenko EP; Nesterenko PN; Paull B
    J Chromatogr A; 2008 Dec; 1213(1):62-9. PubMed ID: 18814874
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chromatography as Lévy stochastic process.
    Dondi F; Cavazzini A; Pasti L
    J Chromatogr A; 2006 Sep; 1126(1-2):257-67. PubMed ID: 16815427
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of eluent composition on retention behavior of anions in ion chromatography on anion-exchangers modified with heparin.
    Safni ; Takeuchi T; Miwa T; Hashimoto Y; Moriyama H
    J Chromatogr A; 1999 Jul; 850(1-2):65-72. PubMed ID: 10457466
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-performance liquid chromatography retention mechanisms and their mathematical descriptions.
    Kazakevich YV
    J Chromatogr A; 2006 Sep; 1126(1-2):232-43. PubMed ID: 16765966
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Determination of amino acids and glucose in amino acid injection by anion exchange chromatography with integrated pulsed amperometric detection].
    Yu H; Ding YS; Mou SF
    Se Pu; 2002 Sep; 20(5):398-402. PubMed ID: 16358687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.