BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 177191)

  • 1. Characterization of microsomal methyl sterol demethylase in two Morris hepatomas.
    Williams MT; Gaylor JL; Morris HP
    Cancer Res; 1976 Feb; 36(2 Pt 1):291-7. PubMed ID: 177191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the rate-determining microsomal reaction of cholesterol biosynthesis from lanosterol in Morris hepatomas and liver.
    Williams MT; Gaylor JL; Morris HP
    Cancer Res; 1977 May; 37(5):1377-83. PubMed ID: 192449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of estrogens in hepatomas of different growth rates.
    Abul-Hajj YJ; Morris HP
    Cancer Res; 1977 Apr; 37(4):1083-7. PubMed ID: 191175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urea synthesis in Novikoff and Morris hepatomas.
    Lawson D; Paik WK; Morris HP; Weinhouse S
    Cancer Res; 1977 Mar; 37(3):850-6. PubMed ID: 189916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation of beta-hydroxy-beta-methylglutaryl coenzyme A reductase in Morris hepatomas 5123C, 7800, and 9618A.
    Goldfarb S; Pitot HC
    Cancer Res; 1971 Dec; 31(12):1879-82. PubMed ID: 4330433
    [No Abstract]   [Full Text] [Related]  

  • 6. Loss of the cholesterol feedback system in the intact hepatoma-bearing rat.
    Bricker LA; Morris HP; Siperstein MD
    J Clin Invest; 1972 Feb; 51(2):206-15. PubMed ID: 4333018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbamyl phosphate synthetases in rat liver neoplasms.
    Lawson D; Paik WK; Morris HP; Weinhouse S
    Cancer Res; 1975 Jan; 35(1):156-63. PubMed ID: 162860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blocking late cholesterol biosynthesis inhibits the growth of transplanted Morris hepatomas (7288CTC) in rats.
    Xu G; Salen G; Lea M; Tint GS; Nguyen LB; Batta AK; Chen TS; Shefer S
    Hepatology; 1996 Aug; 24(2):440-5. PubMed ID: 8690417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of lipid transfer proteins in the abnormal lipid content of Morris hepatoma mitochondria and microsomes.
    Crain RC; Clark RW; Harvey BE
    Cancer Res; 1983 Jul; 43(7):3197-202. PubMed ID: 6850630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of certain vitamin deficiencies on hepatic drug metabolism.
    Zannoni VG; Sato PH
    Fed Proc; 1976 Nov; 35(13):2464-9. PubMed ID: 976490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1) Activities in normal, neoplastic, differentiating, and regenerating liver.
    Heinrich PC; Morris HP; Weber G
    Cancer Res; 1976 Sep; 36(9 pt.1):3189-97. PubMed ID: 10080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosyltransferases and glycosidases in Morris hepatomas.
    Bauer CH; Vischer P; Grünholz H; Reutter W
    Cancer Res; 1977 May; 37(5):1513-8. PubMed ID: 192453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation.
    Trzaskos JM; Bowen WD; Shafiee A; Fischer RT; Gaylor JL
    J Biol Chem; 1984 Nov; 259(21):13402-12. PubMed ID: 6208195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of urea cycle enzymes in transplantable hepatomas and in the livers of tumor-bearing rats and humans.
    Brebnor LD; Grimm J; Balinsky JB
    Cancer Res; 1981 Jul; 41(7):2692-9. PubMed ID: 6265064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzpyrene hydroxylase activity and its induction by methylcholanthrene in Morris hepatomas, in host livers, in adult livers, and in rat liver during development.
    Watanabe M; Potter VR; Morris HP
    Cancer Res; 1970 Feb; 30(2):263-73. PubMed ID: 4314992
    [No Abstract]   [Full Text] [Related]  

  • 16. Cytochrome P4502D and -2C enzymes catalyze the oxidative N-demethylation of the parkinsonism-inducing substance 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in rat liver microsomes.
    Narimatsu S; Tachibana M; Masubuchi Y; Suzuki T
    Chem Res Toxicol; 1996; 9(1):93-8. PubMed ID: 8924622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of hepatic monooxygenases by phenobarbital, 3-methylcholanthrene, and polychlorinated biphenyls in rapid and slow acetylator mice.
    Elves RG; Ueng TH; Alvares AP
    Drug Metab Dispos; 1985; 13(3):354-8. PubMed ID: 2861996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of dietary thiamin on phenobarbital induction of rat hepatic enzymes responsible for metabolizing drugs and carcinogens.
    Wade AE; Evans JS; Holmes D; Baker MT
    Drug Nutr Interact; 1983; 2(2):117-30. PubMed ID: 6432511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of a soluble rat liver protein that stimulates microsomal 4-methyl sterol oxidase activity.
    Gaylor JL; Delwiche CV
    J Biol Chem; 1976 Nov; 251(21):6638-45. PubMed ID: 977591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of enzymes by glucagon, glucose repression, adenosine 3',5'-monophosphate concentration during carcinogenesis and in Morris 6918A hepatoma.
    Sudilovsky O; Gunter R
    Cancer Res; 1975 Apr; 35(4):1069-74. PubMed ID: 234792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.