BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17720177)

  • 1. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography.
    Torres-Lapasió JR; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2007 Sep; 1166(1-2):85-96. PubMed ID: 17720177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography.
    Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD
    J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents.
    Valleix A; Carrat S; Caussignac C; Léonce E; Tchapla A
    J Chromatogr A; 2006 May; 1116(1-2):109-26. PubMed ID: 16631181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation of gradient shape as a result of preferential adsorption of solvents in mixed mobile phases.
    Piatkowski W; Kramarz R; Poplewska I; Antos D
    J Chromatogr A; 2006 Sep; 1127(1-2):187-99. PubMed ID: 16814799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of stationary phases in subcritical fluid chromatography by the solvation parameter model. I. Alkylsiloxane-bonded stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):181-90. PubMed ID: 16487535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solute-solvent interactions in micellar liquid chromatography. Characterization of hybrid micellar systems of sodium dodecyl sulfate-pentanol.
    Gil-Agustí M; Esteve-Romero J; Abraham MH
    J Chromatogr A; 2006 Jun; 1117(1):47-55. PubMed ID: 16635491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvation parameter models for retention on perfluorinated and fluorinated low temperature glassy carbon stationary phases in reversed-phase liquid chromatography.
    Shearer JW; Ding L; Olesik SV
    J Chromatogr A; 2007 Feb; 1141(1):73-80. PubMed ID: 17188695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of temperature on competitive adsorption of the solute and the organic solvent in reversed-phase liquid chromatography.
    Poplewska I; Piatkowski W; Antos D
    J Chromatogr A; 2006 Jan; 1103(2):284-95. PubMed ID: 16343511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations.
    Zhang L; Rafferty JL; Siepmann JI; Chen B; Schure MR
    J Chromatogr A; 2006 Sep; 1126(1-2):219-31. PubMed ID: 16820151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Column equilibration effects in gradient elution in reversed-phase liquid chromatography.
    Pappa-Louisi A; Nikitas P; Agrafiotou P
    J Chromatogr A; 2006 Sep; 1127(1-2):97-107. PubMed ID: 16797559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of pi-pi and dipole-dipole interactions for retention on cyano and phenyl columns in reversed-phase liquid chromatography.
    Croes K; Steffens A; Marchand DH; Snyder LR
    J Chromatogr A; 2005 Dec; 1098(1-2):123-30. PubMed ID: 16314168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bandwidth in gradient elution chromatography with a retained organic modifier.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Mar; 1145(1-2):67-82. PubMed ID: 17280680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography.
    Aschi M; D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F
    Anal Chim Acta; 2007 Jan; 582(2):235-42. PubMed ID: 17386498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of liquid chromatography mobile phases and buffer salts on phosphorus inductively coupled plasma atomic emission and mass spectrometries utilizing ultrasonic nebulization and membrane desolvation.
    Carr JE; Kwok K; Webster GK; Carnahan JW
    J Pharm Biomed Anal; 2006 Jan; 40(1):42-50. PubMed ID: 16098700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile phase effects on retention on a new butylimidazolium-based high-performance liquid chromatographic stationary phase.
    Sun Y; Stalcup AM
    J Chromatogr A; 2006 Sep; 1126(1-2):276-82. PubMed ID: 16854426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation studies on the effects of mobile-phase modification on partitioning in liquid chromatography.
    Wick CD; Siepmann JI; Schure MR
    Anal Chem; 2004 May; 76(10):2886-92. PubMed ID: 15144201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model IV. Aromatic stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 May; 1115(1-2):233-45. PubMed ID: 16529759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of different reversed phase systems in liquid adsorption chromatography of polymer homologous series.
    Trathnigg B; Jamelnik O
    J Chromatogr A; 2007 Mar; 1146(1):78-84. PubMed ID: 17316659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the mobile phase composition on the adsorption behavior of tryptophan in reversed-phase liquid chromatography.
    Ahmad T; Guiochon G
    J Chromatogr A; 2006 May; 1114(1):111-22. PubMed ID: 16530206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.