These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 17720293)
1. Temperature dependence of protein-hydration hydrodynamics by molecular dynamics simulations. Lau EY; Krishnan VV Biophys Chem; 2007 Oct; 130(1-2):55-64. PubMed ID: 17720293 [TBL] [Abstract][Full Text] [Related]
2. Hydration-dependent protein dynamics revealed by molecular dynamics simulation of crystalline staphylococcal nuclease. Joti Y; Nakagawa H; Kataoka M; Kitao A J Phys Chem B; 2008 Mar; 112(11):3522-8. PubMed ID: 18293961 [TBL] [Abstract][Full Text] [Related]
3. Observation of high-temperature dynamic crossover in protein hydration water and its relation to reversible denaturation of lysozyme. Zhang Y; Lagi M; Liu D; Mallamace F; Fratini E; Baglioni P; Mamontov E; Hagen M; Chen SH J Chem Phys; 2009 Apr; 130(13):135101. PubMed ID: 19355784 [TBL] [Abstract][Full Text] [Related]
4. Determination of protein surface hydration shell free energy of water motion: theoretical study and molecular dynamics simulation. Sheu SY; Yang DY J Phys Chem B; 2010 Dec; 114(49):16558-66. PubMed ID: 21090707 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study. Smolin N; Winter R J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045 [TBL] [Abstract][Full Text] [Related]
6. Temperature-dependent mechanisms for the dynamics of protein-hydration waters: a molecular dynamics simulation study. Vogel M J Phys Chem B; 2009 Jul; 113(28):9386-92. PubMed ID: 19548661 [TBL] [Abstract][Full Text] [Related]
7. High-resolution neutron-scattering study of slow dynamics of surface water molecules in zirconium oxide. Mamontov E J Chem Phys; 2005 Jul; 123(2):24706. PubMed ID: 16050765 [TBL] [Abstract][Full Text] [Related]
8. Water penetration and escape in proteins. García AE; Hummer G Proteins; 2000 Feb; 38(3):261-72. PubMed ID: 10713987 [TBL] [Abstract][Full Text] [Related]
9. Hydration at the surface of the protein Monellin: dynamics with femtosecond resolution. Peon J; Pal SK; Zewail AH Proc Natl Acad Sci U S A; 2002 Aug; 99(17):10964-9. PubMed ID: 12177425 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of protein and peptide hydration. Modig K; Liepinsh E; Otting G; Halle B J Am Chem Soc; 2004 Jan; 126(1):102-14. PubMed ID: 14709075 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of surface water in ZrO2 studied by quasielastic neutron scattering. Mamontov E J Chem Phys; 2004 Nov; 121(18):9087-97. PubMed ID: 15527375 [TBL] [Abstract][Full Text] [Related]
12. How protein surfaces induce anomalous dynamics of hydration water. Pizzitutti F; Marchi M; Sterpone F; Rossky PJ J Phys Chem B; 2007 Jul; 111(26):7584-90. PubMed ID: 17564431 [TBL] [Abstract][Full Text] [Related]
13. Protein structure and dynamics in ionic liquids. Insights from molecular dynamics simulation studies. Micaêlo NM; Soares CM J Phys Chem B; 2008 Mar; 112(9):2566-72. PubMed ID: 18266354 [TBL] [Abstract][Full Text] [Related]
14. Simulations of macromolecules in protective and denaturing osmolytes: properties of mixed solvent systems and their effects on water and protein structure and dynamics. Beck DA; Bennion BJ; Alonso DO; Daggett V Methods Enzymol; 2007; 428():373-96. PubMed ID: 17875430 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of hydration in hen egg white lysozyme. Sterpone F; Ceccarelli M; Marchi M J Mol Biol; 2001 Aug; 311(2):409-19. PubMed ID: 11478869 [TBL] [Abstract][Full Text] [Related]
16. Molecular modeling and simulation of water near model micelles: diffusion, rotational relaxation and structure at the hydration interface. Sterpone F; Marchetti G; Pierleoni C; Marchi M J Phys Chem B; 2006 Jun; 110(23):11504-10. PubMed ID: 16771426 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics calculations on amylose fragments. I. Glass transition temperatures of maltodecaose at 1, 5, 10, and 15.8% hydration. Momany FA; Willett JL Biopolymers; 2002 Feb; 63(2):99-110. PubMed ID: 11786998 [TBL] [Abstract][Full Text] [Related]
18. Dynamics, hydration, and motional averaging of a loop-gated artificial protein cavity: the W191G mutant of cytochrome c peroxidase in water as revealed by molecular dynamics simulations. Baron R; McCammon JA Biochemistry; 2007 Sep; 46(37):10629-42. PubMed ID: 17718514 [TBL] [Abstract][Full Text] [Related]
19. Temperature-dependent protein dynamics: a simulation-based probabilistic diffusion-vibration Langevin description. Moritsugu K; Smith JC J Phys Chem B; 2006 Mar; 110(11):5807-16. PubMed ID: 16539528 [TBL] [Abstract][Full Text] [Related]
20. The low-temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments. Lagi M; Chu X; Kim C; Mallamace F; Baglioni P; Chen SH J Phys Chem B; 2008 Feb; 112(6):1571-5. PubMed ID: 18205352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]