BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17720744)

  • 1. The effects of tertiapin-Q on responses of the sinoatrial pacemaker of the guinea-pig heart to vagal nerve stimulation and muscarinic agonists.
    Bolter CP; English DJ
    Exp Physiol; 2008 Jan; 93(1):53-63. PubMed ID: 17720744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of tertiapin-Q and ZD7288 on changes in sinoatrial pacemaker rhythm during vagal stimulation.
    Han SY; Bolter CP
    Auton Neurosci; 2015 Dec; 193():117-26. PubMed ID: 26549880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The muscarinic-activated potassium channel always participates in vagal slowing of the guinea-pig sinoatrial pacemaker.
    Han SY; Bolter CP
    Auton Neurosci; 2011 Oct; 164(1-2):96-100. PubMed ID: 21684818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tertiapin-Q removes a large and rapidly acting component of vagal slowing of the guinea-pig cardiac pacemaker.
    Bolter CP; Turner MJ
    Auton Neurosci; 2009 Oct; 150(1-2):76-81. PubMed ID: 19481505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tertiapin-Q removes a mechanosensitive component of muscarinic control of the sinoatrial pacemaker in the rat.
    Han S; Wilson SJ; Bolter CP
    Clin Exp Pharmacol Physiol; 2010 Sep; 37(9):900-4. PubMed ID: 20497420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure of Ba2+ and Cs+ to block the effects of vagal nerve stimulation in sinoatrial node cells of the guinea-pig heart.
    Bolter CP; Wallace DJ; Hirst GD
    Auton Neurosci; 2001 Dec; 94(1-2):93-101. PubMed ID: 11775712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of muscarinic K(+) channels in the negative chronotropic effect of a muscarinic agonist.
    Yamada M
    J Pharmacol Exp Ther; 2002 Feb; 300(2):681-7. PubMed ID: 11805233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bee venom peptide tertiapin underlines the role of I(KACh) in acetylcholine-induced atrioventricular blocks.
    Drici MD; Diochot S; Terrenoire C; Romey G; Lazdunski M
    Br J Pharmacol; 2000 Oct; 131(3):569-77. PubMed ID: 11015309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sympathetic and vagal interaction in the control of cardiac pacemaker rhythm in the guinea-pig heart: Importance of expressing heart rhythm using an appropriate metric.
    Elawa S; Persson RM; Han SY; Bolter CP
    Auton Neurosci; 2022 Dec; 243():103025. PubMed ID: 36308871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscarinic potassium channels augment dynamic and static heart rate responses to vagal stimulation.
    Mizuno M; Kamiya A; Kawada T; Miyamoto T; Shimizu S; Sugimachi M
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1564-70. PubMed ID: 17526651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscarinic-activated potassium current mediates the negative chronotropic effect of pilocarpine on the rabbit sinoatrial node.
    Rodríguez-Martínez M; Aréchiga-Figueroa IA; Moreno-Galindo EG; Navarro-Polanco RA; Sánchez-Chapula JA
    Pflugers Arch; 2011 Aug; 462(2):235-43. PubMed ID: 21487692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accentuated antagonism in vagal heart rate control mediated through muscarinic potassium channels.
    Mizuno M; Kamiya A; Kawada T; Miyamoto T; Shimizu S; Shishido T; Sugimachi M
    J Physiol Sci; 2008 Dec; 58(6):381-8. PubMed ID: 18842163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal control of sinoatrial rhythm: a mathematical model.
    Dokos S; Celler BG; Lovell NH
    J Theor Biol; 1996 Sep; 182(1):21-44. PubMed ID: 8917735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic basis of the chronotropic effect of acetylcholine on the rabbit sinoatrial node.
    Boyett MR; Kodama I; Honjo H; Arai A; Suzuki R; Toyama J
    Cardiovasc Res; 1995 Jun; 29(6):867-78. PubMed ID: 7656291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects on atrial repolarization of the interaction between K+ channel blockers and muscarinic receptor stimulation.
    Zaza A; Malfatto G; Schwartz PJ
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1095-104. PubMed ID: 7791080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node.
    Shimizu S; Akiyama T; Kawada T; Shishido T; Yamazaki T; Kamiya A; Mizuno M; Sano S; Sugimachi M
    Auton Neurosci; 2009 Jun; 148(1-2):44-9. PubMed ID: 19278905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cholinomimetic agent bethanechol activates IK(ACh) in feline atrial myocytes.
    Benavides-Haro DE; Navarro-Polanco RA; Sánchez-Chapula JA
    Naunyn Schmiedebergs Arch Pharmacol; 2003 Oct; 368(4):309-15. PubMed ID: 12961062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine and the mammalian 'slow inward' current: a computer investigation.
    Egan TM; Noble SJ
    Proc R Soc Lond B Biol Sci; 1987 Apr; 230(1260):315-37. PubMed ID: 2438703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.
    Mabe AM; Hoover DB
    Cardiovasc Res; 2009 Apr; 82(1):93-9. PubMed ID: 19176599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholine modulates I(f) and IK(ACh) via different pathways in rabbit sino-atrial node cells.
    Renaudon B; Bois P; Bescond J; Lenfant J
    J Mol Cell Cardiol; 1997 Mar; 29(3):969-75. PubMed ID: 9152858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.