BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17720758)

  • 1. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size.
    Lysak MA; Cheung K; Kitschke M; Bures P
    Plant Physiol; 2007 Oct; 145(2):402-10. PubMed ID: 17720758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome triplication found across the tribe Brassiceae.
    Lysak MA; Koch MA; Pecinka A; Schubert I
    Genome Res; 2005 Apr; 15(4):516-25. PubMed ID: 15781573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mosaic of ancestral karyotype blocks in the Sinapis alba L. genome.
    Nelson MN; Parkin IA; Lydiate DJ
    Genome; 2011 Jan; 54(1):33-41. PubMed ID: 21217804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae).
    Mandáková T; Lysak MA
    Plant Cell; 2008 Oct; 20(10):2559-70. PubMed ID: 18836039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Island species radiation and karyotypic stasis in Pachycladon allopolyploids.
    Mandáková T; Heenan PB; Lysak MA
    BMC Evol Biol; 2010 Nov; 10():367. PubMed ID: 21114825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two plastid DNA lineages--Rapa/Oleracea and Nigra--within the tribe Brassiceae can be best explained by reciprocal crosses at hexaploidy: evidence from divergence times of the plastid genomes and R-block genes of the A and B genomes of Brassica juncea.
    Sharma S; Padmaja KL; Gupta V; Paritosh K; Pradhan AK; Pental D
    PLoS One; 2014; 9(4):e93260. PubMed ID: 24691069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sinapis genomes provide insights into whole-genome triplication and divergence patterns within tribe Brassiceae.
    Yang T; Cai B; Jia Z; Wang Y; Wang J; King GJ; Ge X; Li Z
    Plant J; 2023 Jan; 113(2):246-261. PubMed ID: 36424891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Crambe abyssinica plastome: Brassicaceae phylogenomic analysis, evolution of RNA editing sites, hotspot and microsatellite characterization of the tribe Brassiceae.
    de Santana Lopes A; Gomes Pacheco T; do Nascimento Vieira L; Guerra MP; Nodari RO; Maltempi de Souza E; de Oliveira Pedrosa F; Rogalski M
    Gene; 2018 Sep; 671():36-49. PubMed ID: 29802993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.
    Cheng F; Mandáková T; Wu J; Xie Q; Lysak MA; Wang X
    Plant Cell; 2013 May; 25(5):1541-54. PubMed ID: 23653472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragmus.
    Ge XH; Wang J; Li ZY
    Ann Bot; 2009 Jul; 104(1):19-31. PubMed ID: 19403626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.
    Jeong YM; Kim N; Ahn BO; Oh M; Chung WH; Chung H; Jeong S; Lim KB; Hwang YJ; Kim GB; Baek S; Choi SB; Hyung DJ; Lee SW; Sohn SH; Kwon SJ; Jin M; Seol YJ; Chae WB; Choi KJ; Park BS; Yu HJ; Mun JH
    Theor Appl Genet; 2016 Jul; 129(7):1357-1372. PubMed ID: 27038817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes.
    Mandáková T; Schranz ME; Sharbel TF; de Jong H; Lysak MA
    Plant J; 2015 Jun; 82(5):785-93. PubMed ID: 25864414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome sequencing supports a multi-vertex model for Brassiceae species.
    Cheng F; Liang J; Cai C; Cai X; Wu J; Wang X
    Curr Opin Plant Biol; 2017 Apr; 36():79-87. PubMed ID: 28242534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal and multi-species chromosome BAC painting in crucifers (Brassicaceae).
    Lysak MA; Mandáková T; Lacombe E
    Cytogenet Genome Res; 2010 Jul; 129(1-3):184-9. PubMed ID: 20501976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How diploidization turned a tetraploid into a pseudotriploid.
    Mandáková T; Gloss AD; Whiteman NK; Lysak MA
    Am J Bot; 2016 Jul; 103(7):1187-96. PubMed ID: 27206460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species.
    Lysak MA; Berr A; Pecinka A; Schmidt R; McBreen K; Schubert I
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5224-9. PubMed ID: 16549785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The widespread crucifer species Cardamine flexuosa is an allotetraploid with a conserved subgenomic structure.
    Mandáková T; Marhold K; Lysak MA
    New Phytol; 2014 Feb; 201(3):982-992. PubMed ID: 24400905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parental genome separation and elimination of cells and chromosomes revealed by AFLP and GISH analyses in a Brassica carinata x Orychophragmus violaceus cross.
    Hua YW; Liu M; Li ZY
    Ann Bot; 2006 Jun; 97(6):993-8. PubMed ID: 16624845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genome of Orychophragmus violaceus provides genomic insights into the evolution of Brassicaceae polyploidization and its distinct traits.
    Zhang K; Yang Y; Zhang X; Zhang L; Fu Y; Guo Z; Chen S; Wu J; Schnable JC; Yi K; Wang X; Cheng F
    Plant Commun; 2023 Mar; 4(2):100431. PubMed ID: 36071668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter variation and transcript divergence in Brassicaceae lineages of FLOWERING LOCUS T.
    Wang J; Hopkins CJ; Hou J; Zou X; Wang C; Long Y; Kurup S; King GJ; Meng J
    PLoS One; 2012; 7(10):e47127. PubMed ID: 23071733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.