These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17720916)

  • 41. Fixation of allelic gene expression landscapes and expression bias pattern shape the transcriptome of the clonal Amazon molly.
    Lu Y; Bierbach D; Ormanns J; Warren WC; Walter RB; Schartl M
    Genome Res; 2021 Mar; 31(3):372-379. PubMed ID: 33547183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mate choice and the Amazon molly: how sexuality and unisexuality can coexist.
    Schlupp I
    J Hered; 2010; 101 Suppl 1():S55-61. PubMed ID: 20421327
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How populations persist when asexuality requires sex: the spatial dynamics of coping with sperm parasites.
    Kokko H; Heubel KU; Rankin DJ
    Proc Biol Sci; 2008 Apr; 275(1636):817-25. PubMed ID: 18182369
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automictic reproduction in interspecific hybrids of poeciliid fish.
    Lampert KP; Lamatsch DK; Fischer P; Epplen JT; Nanda I; Schmid M; Schartl M
    Curr Biol; 2007 Nov; 17(22):1948-53. PubMed ID: 17980594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cross-species chromosome painting corroborates microchromosome fusion during karyotype evolution of birds.
    Hansmann T; Nanda I; Volobouev V; Yang F; Schartl M; Haaf T; Schmid M
    Cytogenet Genome Res; 2009; 126(3):281-304. PubMed ID: 20068299
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa.
    Dedukh D; da Cruz I; Kneitz S; Marta A; Ormanns J; Tichopád T; Lu Y; Alsheimer M; Janko K; Schartl M
    Chromosome Res; 2022 Dec; 30(4):443-457. PubMed ID: 36459298
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes.
    Axelsson E; Webster MT; Smith NG; Burt DW; Ellegren H
    Genome Res; 2005 Jan; 15(1):120-5. PubMed ID: 15590944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MATROCLINOUS INHERITANCE AND CLONAL STRUCTURE OF A MEXICAN POPULATION OF THE GYNOGENETIC FISH, POECILIA FORMOSA.
    Darnell RM; Lamb E; Abramoff P
    Evolution; 1967 Mar; 21(1):168-173. PubMed ID: 28556116
    [No Abstract]   [Full Text] [Related]  

  • 49. A haploid-diploid-triploid mosaic of the Amazon molly, Poecilia formosa.
    Lampert KP; Steinlein C; Schmid M; Fischer P; Schartl M
    Cytogenet Genome Res; 2007; 119(1-2):131-4. PubMed ID: 18160792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular Analysis of the B Microchromosome in Steindachnerina insculpta (Characiformes: Curimatidae) by Microdissection.
    Sampaio TR; Gouveia JG; da Silva CR; Dias AL; da Rosa R
    Cytogenet Genome Res; 2015; 146(1):51-7. PubMed ID: 25999244
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide-toxic habitats of a neotropical fish (Poecilia mexicana).
    Pfenninger M; Patel S; Arias-Rodriguez L; Feldmeyer B; Riesch R; Plath M
    Mol Ecol; 2015 Nov; 24(21):5446-59. PubMed ID: 26405850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of androgens in species recognition and sperm production in Atlantic mollies (Poecilia mexicana).
    Gabor CR; Aspbury AS; Ma J; Nice CC
    Physiol Behav; 2012 Feb; 105(3):885-92. PubMed ID: 22061426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Why Do Some Vertebrates Have Microchromosomes?
    Srikulnath K; Ahmad SF; Singchat W; Panthum T
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571831
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Micro vs. macro: structural-functional organization of avian micro- and macrochromosomes].
    Rodionov AV
    Genetika; 1996 May; 32(5):597-608. PubMed ID: 8755033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mode of origin and sources of genotypic diversity in triploid gynogenetic fish clones (Poeciliopsis: Poeciliidae).
    Quattro JM; Avise JC; Vrijenhoek RC
    Genetics; 1992 Mar; 130(3):621-8. PubMed ID: 1348041
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytophotometric evidence for triploidy in hybrids of the gynogenetic fish, Poecilia formosa.
    Rasch EM; Darnell RM; Kallman KD; Abramoff P
    J Exp Zool; 1965 Nov; 160(2):155-69. PubMed ID: 5894252
    [No Abstract]   [Full Text] [Related]  

  • 57. Molecular phylogeny of the live-bearing fish genus Poecilia (Cyprinodontiformes: Poeciliidae).
    Breden F; Ptacek MB; Rashed M; Taphorn D; Figueiredo CA
    Mol Phylogenet Evol; 1999 Jul; 12(2):95-104. PubMed ID: 10381313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Karyotype reorganization with conserved genomic compartmentalization in dot-shaped microchromosomes in the Japanese mountain hawk-eagle (Nisaetus nipalensis orientalis, Accipitridae).
    Nishida C; Ishijima J; Ishishita S; Yamada K; Griffin DK; Yamazaki T; Matsuda Y
    Cytogenet Genome Res; 2013; 141(4):284-94. PubMed ID: 23838459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. INTERSPECIFIC HYBRIDIZATION AND THE EVOLUTIONARY ORIGIN OF A GYNOGENETIC FISH, POECILIA FORMOSA.
    Turner BJ; Brett BH; Miller RR
    Evolution; 1980 Sep; 34(5):917-922. PubMed ID: 28581138
    [No Abstract]   [Full Text] [Related]  

  • 60. The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages--on the evolution of polyploidy in asexual vertebrates.
    Janko K; Bohlen J; Lamatsch D; Flajshans M; Epplen JT; Ráb P; Kotlík P; Slechtová V
    Genetica; 2007 Oct; 131(2):185-94. PubMed ID: 17216551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.