These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
735 related articles for article (PubMed ID: 17721543)
1. Higher-energy C-trap dissociation for peptide modification analysis. Olsen JV; Macek B; Lange O; Makarov A; Horning S; Mann M Nat Methods; 2007 Sep; 4(9):709-12. PubMed ID: 17721543 [TBL] [Abstract][Full Text] [Related]
2. Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Segu ZM; Mechref Y Rapid Commun Mass Spectrom; 2010 May; 24(9):1217-25. PubMed ID: 20391591 [TBL] [Abstract][Full Text] [Related]
3. pNovo: de novo peptide sequencing and identification using HCD spectra. Chi H; Sun RX; Yang B; Song CQ; Wang LH; Liu C; Fu Y; Yuan ZF; Wang HP; He SM; Dong MQ J Proteome Res; 2010 May; 9(5):2713-24. PubMed ID: 20329752 [TBL] [Abstract][Full Text] [Related]
4. Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. Yates JR; Cociorva D; Liao L; Zabrouskov V Anal Chem; 2006 Jan; 78(2):493-500. PubMed ID: 16408932 [TBL] [Abstract][Full Text] [Related]
5. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. Frese CK; Altelaar AF; Hennrich ML; Nolting D; Zeller M; Griep-Raming J; Heck AJ; Mohammed S J Proteome Res; 2011 May; 10(5):2377-88. PubMed ID: 21413819 [TBL] [Abstract][Full Text] [Related]
6. De novo sequencing methods in proteomics. Hughes C; Ma B; Lajoie GA Methods Mol Biol; 2010; 604():105-21. PubMed ID: 20013367 [TBL] [Abstract][Full Text] [Related]
7. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer. Saba J; Bonneil E; Pomiès C; Eng K; Thibault P J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569 [TBL] [Abstract][Full Text] [Related]
8. Food contaminant analysis at ultra-high mass resolution: application of hybrid linear ion trap - orbitrap mass spectrometry for the determination of the polyether toxins, azaspiracids, in shellfish. Skrabáková Z; O'Halloran J; van Pelt FN; James KJ Rapid Commun Mass Spectrom; 2010 Oct; 24(20):2966-74. PubMed ID: 20872629 [TBL] [Abstract][Full Text] [Related]
9. Tandem parallel fragmentation of peptides for mass spectrometry. Ramos AA; Yang H; Rosen LE; Yao X Anal Chem; 2006 Sep; 78(18):6391-7. PubMed ID: 16970313 [TBL] [Abstract][Full Text] [Related]
10. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115 [TBL] [Abstract][Full Text] [Related]
11. Discrimination of cyclic and linear oligosaccharides by tandem mass spectrometry using collision-induced dissociation (CID), pulsed-Q-dissociation (PQD) and the higher-energy C-trap dissociation modes. Przybylski C; Bonnet V Rapid Commun Mass Spectrom; 2013 Jan; 27(1):75-87. PubMed ID: 23239319 [TBL] [Abstract][Full Text] [Related]
12. Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra. de Graaf EL; Altelaar AF; van Breukelen B; Mohammed S; Heck AJ J Proteome Res; 2011 Sep; 10(9):4334-41. PubMed ID: 21726076 [TBL] [Abstract][Full Text] [Related]
13. Sequence similarity-driven proteomics in organisms with unknown genomes by LC-MS/MS and automated de novo sequencing. Waridel P; Frank A; Thomas H; Surendranath V; Sunyaev S; Pevzner P; Shevchenko A Proteomics; 2007 Jul; 7(14):2318-29. PubMed ID: 17623296 [TBL] [Abstract][Full Text] [Related]
14. High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all. Köcher T; Pichler P; Schutzbier M; Stingl C; Kaul A; Teucher N; Hasenfuss G; Penninger JM; Mechtler K J Proteome Res; 2009 Oct; 8(10):4743-52. PubMed ID: 19663507 [TBL] [Abstract][Full Text] [Related]
15. MSNovo: a dynamic programming algorithm for de novo peptide sequencing via tandem mass spectrometry. Mo L; Dutta D; Wan Y; Chen T Anal Chem; 2007 Jul; 79(13):4870-8. PubMed ID: 17550227 [TBL] [Abstract][Full Text] [Related]
16. Formation of c1 fragment ions in collision-induced dissociation of glutamine-containing peptide ions: a tip for de novo sequencing. Lee YJ; Lee YM Rapid Commun Mass Spectrom; 2004; 18(18):2069-76. PubMed ID: 15378720 [TBL] [Abstract][Full Text] [Related]
17. Assessing peptide de novo sequencing algorithms performance on large and diverse data sets. Pitzer E; Masselot A; Colinge J Proteomics; 2007 Sep; 7(17):3051-4. PubMed ID: 17683051 [TBL] [Abstract][Full Text] [Related]
18. Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry. Ejsing CS; Moehring T; Bahr U; Duchoslav E; Karas M; Simons K; Shevchenko A J Mass Spectrom; 2006 Mar; 41(3):372-89. PubMed ID: 16498600 [TBL] [Abstract][Full Text] [Related]
19. Rapid validation of protein identifications with the borderline statistical confidence via de novo sequencing and MS BLAST searches. Wielsch N; Thomas H; Surendranath V; Waridel P; Frank A; Pevzner P; Shevchenko A J Proteome Res; 2006 Sep; 5(9):2448-56. PubMed ID: 16944958 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a high field Orbitrap mass spectrometer for proteome analysis. Pachl F; Ruprecht B; Lemeer S; Kuster B Proteomics; 2013 Sep; 13(17):2552-62. PubMed ID: 23836775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]