These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17721828)

  • 1. Molecular characterization and evaluation of plant litter-associated fungi from the spring 'grazing corridor' of a sheep herd vulnerable to alveld disease.
    Mysterud I; Høiland K; Koller G; Stensrud Ø
    Mycopathologia; 2007 Nov; 164(5):201-15. PubMed ID: 17721828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungi on Narthecium ossifragum leaves and their possible involvement in alveld disease of Norwegian lambs.
    di Menna ME; Flåøyen A; Ulvund MJ
    Vet Res Commun; 1992; 16(2):117-24. PubMed ID: 1496813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sapogenin levels in Narthecium ossifragum plants and Ovis aries lamb faeces during two alveld outbreaks in Møre og Romsdal, Norway, 2001.
    Mysterud I; Flåøyen A; Loader JI; Wilkins AL
    Vet Res Commun; 2007 Oct; 31(7):895-908. PubMed ID: 17279463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure to induce toxicity in lambs by administering saponins from Narthecium ossifragum.
    Flåøyen A; Hjorth Tønnesen H; Grønstøl H; Karlsen J
    Vet Res Commun; 1991; 15(6):483-7. PubMed ID: 1803727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bog asphodel (Narthecium ossifragum) as a cause of photosensitisation in lambs in Norway.
    Laksesvela B; Dishington IW
    Vet Rec; 1983 Apr; 112(16):375-8. PubMed ID: 6857980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosensitisation of livestock grazing Narthecium ossifragum: Current knowledge and future directions.
    Pollock ML; Wishart H; Holland JP; Malone FE; Waterhouse A
    Vet J; 2015 Dec; 206(3):275-83. PubMed ID: 26324639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The etiology of "alveld" elucidated by the BSP-test.
    Dishington IW; Laksesvela B
    Nord Vet Med; 1976 Nov; 28(11):547-9. PubMed ID: 995586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycorrhizal and root endophytic fungi of containerized Picea glauca seedlings assessed by rDNA sequence analysis.
    Kernaghan G; Sigler L; Khasa D
    Microb Ecol; 2003 Feb; 45(2):128-36. PubMed ID: 12545311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two new Tricladium species from streams in Alaska.
    Gulis V; Baschien C; Marvanová L
    Mycologia; 2012; 104(6):1510-6. PubMed ID: 22778169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of saponins from Narthecium ossifragum--a plant implicated in the aetiology of alveld, a hepatogenous photosensitization of sheep.
    Flåøyen A; Wilkins AL
    Vet Res Commun; 1997 Jul; 21(5):335-45. PubMed ID: 9232777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic diversity of culturable endophytic fungi in Dongxiang wild rice (Oryza rufipogon Griff), detection of polyketide synthase gene and their antagonistic activity analysis.
    Wang Y; Gao BL; Li XX; Zhang ZB; Yan RM; Yang HL; Zhu D
    Fungal Biol; 2015 Nov; 119(11):1032-1045. PubMed ID: 26466878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ITS1 versus ITS2 as DNA metabarcodes for fungi.
    Blaalid R; Kumar S; Nilsson RH; Abarenkov K; Kirk PM; Kauserud H
    Mol Ecol Resour; 2013 Mar; 13(2):218-24. PubMed ID: 23350562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences.
    Guo LD; Hyde KD; Liew EC
    Mol Phylogenet Evol; 2001 Jul; 20(1):1-13. PubMed ID: 11421644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines.
    Stuart RM; Romão AS; Pizzirani-Kleiner AA; Azevedo JL; Araújo WL
    Arch Microbiol; 2010 Apr; 192(4):307-13. PubMed ID: 20191263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ignored sediment fungal populations in water supply reservoirs are revealed by quantitative PCR and 454 pyrosequencing.
    Zhang H; Huang T; Chen S
    BMC Microbiol; 2015 Feb; 15():44. PubMed ID: 25886005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens.
    Soltani J; Hosseyni Moghaddam MS
    Curr Microbiol; 2015 Apr; 70(4):580-6. PubMed ID: 25527365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland.
    Stukenbrock EH; Rosendahl S
    Mycorrhiza; 2005 Nov; 15(7):497-503. PubMed ID: 15809870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endophyte communities vary in the needles of Norway spruce clones.
    Rajala T; Velmala SM; Tuomivirta T; Haapanen M; Müller M; Pennanen T
    Fungal Biol; 2013 Mar; 117(3):182-90. PubMed ID: 23537875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Main airborne Ascomycota spores: characterization by culture, spore morphology, ribosomal DNA sequences and enzymatic analysis.
    Oliveira M; Amorim MI; Ferreira E; Delgado L; Abreu I
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1171-81. PubMed ID: 20143229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.).
    Wang W; Zhai Y; Cao L; Tan H; Zhang R
    Microbiol Res; 2016; 188-189():1-8. PubMed ID: 27296957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.