These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 17721879)
1. Excited states of GFP chromophore and active site studied by the SAC-CI method: effect of protein-environment and mutations. Hasegawa JY; Fujimoto K; Swerts B; Miyahara T; Nakatsuji H J Comput Chem; 2007 Nov; 28(15):2443-52. PubMed ID: 17721879 [TBL] [Abstract][Full Text] [Related]
2. Electronic excitations of the green fluorescent protein chromophore in its protonation states: SAC/SAC-CI study. Das AK; Hasegawa JY; Miyahara T; Ehara M; Nakatsuji H J Comput Chem; 2003 Sep; 24(12):1421-31. PubMed ID: 12868107 [TBL] [Abstract][Full Text] [Related]
3. Computational study of the absorption spectra of green fluorescent protein mutants. Patnaik SS; Trohalaki S; Naik RR; Stone MO; Pachter R Biopolymers; 2007 Feb; 85(3):253-63. PubMed ID: 17206623 [TBL] [Abstract][Full Text] [Related]
4. Mapping proton wires in proteins: carbonic anhydrase and GFP chromophore biosynthesis. Shinobu A; Agmon N J Phys Chem A; 2009 Jul; 113(26):7253-66. PubMed ID: 19388648 [TBL] [Abstract][Full Text] [Related]
5. Structural events in the photocycle of green fluorescent protein. van Thor JJ; Zanetti G; Ronayne KL; Towrie M J Phys Chem B; 2005 Aug; 109(33):16099-108. PubMed ID: 16853046 [TBL] [Abstract][Full Text] [Related]
6. Electronic spectroscopy and solvatochromism in the chromophore of GFP and the Y66F mutant. Webber NM; Meech SR Photochem Photobiol Sci; 2007 Sep; 6(9):976-81. PubMed ID: 17721596 [TBL] [Abstract][Full Text] [Related]
7. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores. Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600 [TBL] [Abstract][Full Text] [Related]
8. Structure and mechanism of the photoactivatable green fluorescent protein. Henderson JN; Gepshtein R; Heenan JR; Kallio K; Huppert D; Remington SJ J Am Chem Soc; 2009 Apr; 131(12):4176-7. PubMed ID: 19278226 [TBL] [Abstract][Full Text] [Related]
10. The 2.1A crystal structure of copGFP, a representative member of the copepod clade within the green fluorescent protein superfamily. Wilmann PG; Battad J; Petersen J; Wilce MC; Dove S; Devenish RJ; Prescott M; Rossjohn J J Mol Biol; 2006 Jun; 359(4):890-900. PubMed ID: 16697009 [TBL] [Abstract][Full Text] [Related]
11. Complex fluorescence of the cyan fluorescent protein: comparisons with the H148D variant and consequences for quantitative cell imaging. Villoing A; Ridhoir M; Cinquin B; Erard M; Alvarez L; Vallverdu G; Pernot P; Grailhe R; Mérola F; Pasquier H Biochemistry; 2008 Nov; 47(47):12483-92. PubMed ID: 18975974 [TBL] [Abstract][Full Text] [Related]
12. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores. Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809 [TBL] [Abstract][Full Text] [Related]
13. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981 [TBL] [Abstract][Full Text] [Related]
14. Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 3. Short- and long-time dynamics of the excited-state proton transfer. Leiderman P; Genosar L; Huppert D; Shu X; Remington SJ; Solntsev KM; Tolbert LM Biochemistry; 2007 Oct; 46(43):12026-36. PubMed ID: 17918961 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics study of chemically engineered green fluorescent protein mutants: comparison of intramolecular fluorescence resonance energy transfer rate. Mitchell FL; Frank F; Marks GE; Suzuki M; Douglas KT; Bryce RA Proteins; 2009 Apr; 75(1):28-39. PubMed ID: 18767157 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equilibria. Nifosì R; Tozzini V Proteins; 2003 May; 51(3):378-89. PubMed ID: 12696049 [TBL] [Abstract][Full Text] [Related]
17. Excited states of fluorescent proteins, mKO and DsRed: chromophore-protein electrostatic interaction behind the color variations. Hasegawa JY; Ise T; Fujimoto KJ; Kikuchi A; Fukumura E; Miyawaki A; Shiro Y J Phys Chem B; 2010 Mar; 114(8):2971-9. PubMed ID: 20131896 [TBL] [Abstract][Full Text] [Related]
18. Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein. Sniegowski JA; Phail ME; Wachter RM Biochem Biophys Res Commun; 2005 Jul; 332(3):657-63. PubMed ID: 15894286 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the electronic spectra and excited-state geometries of poly(para-phenylene vinylene) (PPV) and poly(para-phenylene) (PP) by the symmetry-adapted cluster configuration interaction (SAC-CI) method. Saha B; Ehara M; Nakatsuji H J Phys Chem A; 2007 Jun; 111(25):5473-81. PubMed ID: 17542562 [TBL] [Abstract][Full Text] [Related]
20. The case of the missing ring: radical cleavage of a carbon-carbon bond and implications for GFP chromophore biosynthesis. Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED J Am Chem Soc; 2007 Mar; 129(11):3118-26. PubMed ID: 17326633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]