These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17722263)

  • 1. Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns.
    Khang D; Sato M; Price RL; Ribbe AE; Webster TJ
    Int J Nanomedicine; 2006; 1(1):65-72. PubMed ID: 17722263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of spatial cell attachment on carbon nanofiber patterns on polycarbonate urethane.
    Bajaj P; Khang D; Webster TJ
    Int J Nanomedicine; 2006; 1(3):361-5. PubMed ID: 17717976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective bone cell adhesion on formulations containing carbon nanofibers.
    Price RL; Waid MC; Haberstroh KM; Webster TJ
    Biomaterials; 2003 May; 24(11):1877-87. PubMed ID: 12615478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
    Webster TJ; Ejiofor JU
    Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR.
    Nelson M; Balasundaram G; Webster TJ
    Int J Nanomedicine; 2006; 1(3):339-49. PubMed ID: 17717974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.
    Akay G; Birch MA; Bokhari MA
    Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold.
    Gough JE; Jones JR; Hench LL
    Biomaterials; 2004 May; 25(11):2039-46. PubMed ID: 14741618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets.
    Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F
    Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications.
    Misra SK; Ohashi F; Valappil SP; Knowles JC; Roy I; Silva SR; Salih V; Boccaccini AR
    Acta Biomater; 2010 Mar; 6(3):735-42. PubMed ID: 19800427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast interaction with DLC-coated Si substrates.
    Chai F; Mathis N; Blanchemain N; Meunier C; Hildebrand HF
    Acta Biomater; 2008 Sep; 4(5):1369-81. PubMed ID: 18495562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique.
    Lahiri D; Benaduce AP; Kos L; Agarwal A
    Nanotechnology; 2011 Sep; 22(35):355703. PubMed ID: 21817784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts.
    Price RL; Ellison K; Haberstroh KM; Webster TJ
    J Biomed Mater Res A; 2004 Jul; 70(1):129-38. PubMed ID: 15174117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased osteoblast functions on theta + delta nanofiber alumina.
    Webster TJ; Hellenmeyer EL; Price RL
    Biomaterials; 2005 Mar; 26(9):953-60. PubMed ID: 15369683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation.
    Khang D; Park GE; Webster TJ
    J Biomed Mater Res A; 2008 Jul; 86(1):253-60. PubMed ID: 18186050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc-containing phosphate-based glasses for tissue engineering.
    Salih V; Patel A; Knowles JC
    Biomed Mater; 2007 Mar; 2(1):11-20. PubMed ID: 18458428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Ca/P molar ratios on regulating biological functions of hybridized carbon nanofibers containing bioactive glass nanoparticles.
    Cheng D; Liu D; Tang T; Zhang X; Jia X; Cai Q; Yang X
    Biomed Mater; 2017 Apr; 12(2):025019. PubMed ID: 28388594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and complete cellularization of hydroxyapatite for bone tissue engineering.
    Anil Kumar PR; Varma HK; Kumary TV
    Acta Biomater; 2005 Sep; 1(5):545-52. PubMed ID: 16701834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane.
    Kim JY; Khang D; Lee JE; Webster TJ
    J Biomed Mater Res A; 2009 Feb; 88(2):419-26. PubMed ID: 18306321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).
    Wan Y; Wang Y; Liu Z; Qu X; Han B; Bei J; Wang S
    Biomaterials; 2005 Jul; 26(21):4453-9. PubMed ID: 15701374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.