These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 17722285)

  • 1. Less harmful acidic degradation of poly(lacticco-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition.
    Liu H; Slamovich EB; Webster TJ
    Int J Nanomedicine; 2006; 1(4):541-5. PubMed ID: 17722285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites.
    Savaiano JK; Webster TJ
    Biomaterials; 2004; 25(7-8):1205-13. PubMed ID: 14643594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications.
    Liu H; Webster TJ
    Int J Nanomedicine; 2010 Apr; 5():299-313. PubMed ID: 20463945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased osteoblast function on PLGA composites containing nanophase titania.
    Webster TJ; Smith TA
    J Biomed Mater Res A; 2005 Sep; 74(4):677-86. PubMed ID: 16035065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone.
    Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites.
    Liu H; Slamovich EB; Webster TJ
    Nanotechnology; 2005 Jul; 16(7):S601-8. PubMed ID: 21727482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering.
    Xie S; Zhu Q; Wang B; Gu H; Liu W; Cui L; Cen L; Cao Y
    Biomaterials; 2010 Jul; 31(19):5100-9. PubMed ID: 20347132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness.
    Liu H; Slamovich EB; Webster TJ
    J Biomed Mater Res A; 2006 Sep; 78(4):798-807. PubMed ID: 16741979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium dioxide (TiO(2)) nanoparticles filled poly(D,L lactid acid) (PDLLA) matrix composites for bone tissue engineering.
    Gerhardt LC; Jell GM; Boccaccini AR
    J Mater Sci Mater Med; 2007 Jul; 18(7):1287-98. PubMed ID: 17211724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(lactic-co-glycolic acid)(PLGA)/TiO
    Eslami H; Azimi Lisar H; Jafarzadeh Kashi TS; Tahriri M; Ansari M; Rafiei T; Bastami F; Shahin-Shamsabadi A; Mashhadi Abbas F; Tayebi L
    Biologicals; 2018 May; 53():51-62. PubMed ID: 29503205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering.
    Parizek M; Douglas TE; Novotna K; Kromka A; Brady MA; Renzing A; Voss E; Jarosova M; Palatinus L; Tesarek P; Ryparova P; Lisa V; dos Santos AM; Warnke PH; Bacakova L
    Int J Nanomedicine; 2012; 7():1931-51. PubMed ID: 22619532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS
    Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J
    J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications.
    Wang Y; Shi X; Ren L; Yao Y; Zhang F; Wang DA
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):84-92. PubMed ID: 20091906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications.
    Smith LJ; Swaim JS; Yao C; Haberstroh KM; Nauman EA; Webster TJ
    Int J Nanomedicine; 2007; 2(3):493-9. PubMed ID: 18019847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold.
    Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS
    Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces.
    Miller DC; Thapa A; Haberstroh KM; Webster TJ
    IEEE Trans Nanobioscience; 2002 Jun; 1(2):61-6. PubMed ID: 16689208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-neutralizing PLGA/magnesium composites as novel biomaterials for tissue engineering.
    Xu TO; Kim HS; Stahl T; Nukavarapu SP
    Biomed Mater; 2018 Mar; 13(3):035013. PubMed ID: 29362293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.