These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 17722535)
1. MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Smith IO; McCabe LR; Baumann MJ Int J Nanomedicine; 2006; 1(2):189-94. PubMed ID: 17722535 [TBL] [Abstract][Full Text] [Related]
2. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
3. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP; Venugopal J; Ramakrishna S Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211 [TBL] [Abstract][Full Text] [Related]
4. Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR. Nelson M; Balasundaram G; Webster TJ Int J Nanomedicine; 2006; 1(3):339-49. PubMed ID: 17717974 [TBL] [Abstract][Full Text] [Related]
5. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Mygind T; Stiehler M; Baatrup A; Li H; Zou X; Flyvbjerg A; Kassem M; Bünger C Biomaterials; 2007 Feb; 28(6):1036-47. PubMed ID: 17081601 [TBL] [Abstract][Full Text] [Related]
6. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Akay G; Birch MA; Bokhari MA Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889 [TBL] [Abstract][Full Text] [Related]
7. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. Li Y; Yang W; Li X; Zhang X; Wang C; Meng X; Pei Y; Fan X; Lan P; Wang C; Li X; Guo Z ACS Appl Mater Interfaces; 2015 Mar; 7(10):5715-24. PubMed ID: 25711714 [TBL] [Abstract][Full Text] [Related]
8. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
9. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801 [TBL] [Abstract][Full Text] [Related]
10. The effect of pore size on cell adhesion in collagen-GAG scaffolds. O'Brien FJ; Harley BA; Yannas IV; Gibson LJ Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817 [TBL] [Abstract][Full Text] [Related]
11. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods. Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. St-Pierre JP; Gauthier M; Lefebvre LP; Tabrizian M Biomaterials; 2005 Dec; 26(35):7319-28. PubMed ID: 16000220 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold. Huang J; Xiong J; Liu J; Zhu W; Chen J; Duan L; Zhang J; Wang D Biomed Mater Eng; 2015; 26 Suppl 1():S197-205. PubMed ID: 26405972 [TBL] [Abstract][Full Text] [Related]
14. Bone regeneration on computer-designed nano-fibrous scaffolds. Chen VJ; Smith LA; Ma PX Biomaterials; 2006 Jul; 27(21):3973-9. PubMed ID: 16564086 [TBL] [Abstract][Full Text] [Related]
15. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
16. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. Shimizu K; Ito A; Honda H J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479 [TBL] [Abstract][Full Text] [Related]
18. Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications. Alshemary AZ; Pazarçeviren AE; Keskin D; Tezcaner A; Hussain R; Evis Z Biomed Mater; 2019 Aug; 14(5):055010. PubMed ID: 31362280 [TBL] [Abstract][Full Text] [Related]
19. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999 [TBL] [Abstract][Full Text] [Related]
20. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]