These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17722535)

  • 21. The integration of pore size and porosity distribution on Ti-6A1-4V scaffolds by 3D printing in the modulation of osteo-differentation.
    Wo J; Huang SS; Wu DY; Zhu J; Li ZZ; Yuan F
    J Appl Biomater Funct Mater; 2020; 18():2280800020934652. PubMed ID: 32936027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.
    Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro biocompatibility analysis of novel nano-biphasic calcium phosphate scaffolds in different composition ratios.
    Ebrahimi M; Pripatnanont P; Suttapreyasri S; Monmaturapoj N
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):52-61. PubMed ID: 23847019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).
    Wan Y; Wang Y; Liu Z; Qu X; Han B; Bei J; Wang S
    Biomaterials; 2005 Jul; 26(21):4453-9. PubMed ID: 15701374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering.
    Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L
    Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces.
    Zhuang XM; Zhou B; Ouyang JL; Sun HP; Wu YL; Liu Q; Deng FL
    Biomed Mater; 2014 Aug; 9(4):045001. PubMed ID: 24945708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds.
    Michna S; Wu W; Lewis JA
    Biomaterials; 2005 Oct; 26(28):5632-9. PubMed ID: 15878368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.
    Uswatta SP; Okeke IU; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?
    Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE
    Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.
    Murphy CM; Haugh MG; O'Brien FJ
    Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fundamental parameters of chitosan in polymer scaffolds affecting osteoblasts (MC3T3-E1).
    Suphasiriroj W; Yotnuengnit P; Surarit R; Pichyangkura R
    J Mater Sci Mater Med; 2009 Jan; 20(1):309-20. PubMed ID: 18791666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osteogenesis of rat mesenchymal stem cells and osteoblastic cells on strontium-doped nanohydroxyapatite-coated titanium surfaces.
    Jiang QH; Gong X; Wang XX; He FM
    Int J Oral Maxillofac Implants; 2015; 30(2):461-71. PubMed ID: 25830407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of surface wettability and surface charge of electrosprayed nanoapatites on the behaviour of osteoblasts.
    Thian ES; Ahmad Z; Huang J; Edirisinghe MJ; Jayasinghe SN; Ireland DC; Brooks RA; Rushton N; Bonfield W; Best SM
    Acta Biomater; 2010 Mar; 6(3):750-5. PubMed ID: 19671453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Study on tailoring the nanostructured surfaces of cuttlefish bone transformed hydroxyapatite porous ceramics and its effect on osteoblasts].
    Jing L; Yang C; Huan Z; Ke Q; Chang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Mar; 33(3):363-369. PubMed ID: 30129337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique.
    Detsch R; Uhl F; Deisinger U; Ziegler G
    J Mater Sci Mater Med; 2008 Apr; 19(4):1491-6. PubMed ID: 17990079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.
    Mota C; Wang SY; Puppi D; Gazzarri M; Migone C; Chiellini F; Chen GQ; Chiellini E
    J Tissue Eng Regen Med; 2017 Jan; 11(1):175-186. PubMed ID: 24889107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells.
    Okamoto M; Dohi Y; Ohgushi H; Shimaoka H; Ikeuchi M; Matsushima A; Yonemasu K; Hosoi H
    J Mater Sci Mater Med; 2006 Apr; 17(4):327-36. PubMed ID: 16617411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering.
    Qian J; Suo A; Jin X; Xu W; Xu M
    J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.