BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17722878)

  • 21. Metal-porphyrin orbital interactions in highly saddled low-spin iron(III) porphyrin complexes.
    Ohgo Y; Hoshino A; Okamura T; Uekusa H; Hashizume D; Ikezaki A; Nakamura M
    Inorg Chem; 2007 Oct; 46(20):8193-207. PubMed ID: 17725347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vanadium-based, extended catalytic lifetime catechol dioxygenases: evidence for a common catalyst.
    Yin CX; Finke RG
    J Am Chem Soc; 2005 Jun; 127(25):9003-13. PubMed ID: 15969577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mono- and dinuclear manganese(III) complexes showing efficient catechol oxidase activity: syntheses, characterization and spectroscopic studies.
    Banu KS; Chattopadhyay T; Banerjee A; Mukherjee M; Bhattacharya S; Patra GK; Zangrando E; Das D
    Dalton Trans; 2009 Oct; (40):8755-64. PubMed ID: 19809751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mimicking the intradiol catechol cleavage activity of catechol dioxygenase by high-spin iron(III) complexes of a new class of a facially bound [N2O] ligand.
    Panda MK; John A; Shaikh MM; Ghosh P
    Inorg Chem; 2008 Dec; 47(24):11847-56. PubMed ID: 19006298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 4-nitrocatechol as a probe of a Mn(II)-dependent extradiol-cleaving catechol dioxygenase (MndD): comparison with relevant Fe(II) and Mn(II) model complexes.
    Reynolds MF; Costas M; Ito M; Jo DH; Tipton AA; Whiting AK; Que L
    J Biol Inorg Chem; 2003 Feb; 8(3):263-72. PubMed ID: 12589562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic studies of the anaerobic enzyme-substrate complex of catechol 1,2-dioxygenase.
    Horsman GP; Jirasek A; Vaillancourt FH; Barbosa CJ; Jarzecki AA; Xu C; Mekmouche Y; Spiro TG; Lipscomb JD; Blades MW; Turner RF; Eltis LD
    J Am Chem Soc; 2005 Dec; 127(48):16882-91. PubMed ID: 16316234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative double dehalogenation of tetrachlorocatechol by a bio-inspired CuII complex: formation of chloranilic acid.
    Bruijnincx PC; Viciano-Chumillas M; Lutz M; Spek AL; Reedijk J; van Koten G; Klein Gebbink RJ
    Chemistry; 2008; 14(18):5567-76. PubMed ID: 18449873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Models for extradiol cleaving catechol dioxygenases: syntheses, structures, and reactivities of iron(II)-monoanionic catecholate complexes.
    Jo DH; Chiou YM; Que L
    Inorg Chem; 2001 Jun; 40(13):3181-90. PubMed ID: 11399191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trigonal-bipyramidal geometry induced by an external water ligand in a sterically hindered iron salen complex, related to the active site of protocatechuate 3,4-dioxygenase.
    Kurahashi T; Oda K; Sugimoto M; Ogura T; Fujii H
    Inorg Chem; 2006 Sep; 45(19):7709-21. PubMed ID: 16961363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The coordination chemistry of FeCl3 and FeCl2 to bis[2-(2,3-dihydroxyphenyl)-6-pyridylmethyl](2-pyridylmethyl)amine: access to a diiron(III) compound with an unusual pentagonal-bipyramidal/square-pyramidal environment.
    Machkour A; Thallaj NK; Benhamou L; Lachkar M; Mandon D
    Chemistry; 2006 Aug; 12(25):6660-8. PubMed ID: 16789056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactivity of molecular dioxygen towards a series of isostructural dichloroiron(III) complexes with tripodal tetraamine ligands: general access to mu-oxodiiron(III) complexes and effect of alpha-fluorination on the reaction kinetics.
    Thallaj NK; Rotthaus O; Benhamou L; Humbert N; Elhabiri M; Lachkar M; Welter R; Albrecht-Gary AM; Mandon D
    Chemistry; 2008; 14(22):6742-53. PubMed ID: 18561351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel tripodal ligand containing three different N-heterocyclic donor functions and its application in catechol dioxygenase mimicking.
    Wagner M; Limberg C; Tietz T
    Chemistry; 2009; 15(22):5567-76. PubMed ID: 19360824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DFT study on the catalytic reactivity of a functional model complex for intradiol-cleaving dioxygenases.
    Georgiev V; Noack H; Borowski T; Blomberg MR; Siegbahn PE
    J Phys Chem B; 2010 May; 114(17):5878-85. PubMed ID: 20387788
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autoxidation-product-initiated dioxygenases: vanadium-based, record catalytic lifetime catechol dioxygenase catalysis.
    Yin CX; Sasaki Y; Finke RG
    Inorg Chem; 2005 Nov; 44(23):8521-30. PubMed ID: 16270992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of acid-base catalysis in the extradiol and intradiol catechol dioxygenase reactions using a broad specificity mutant enzyme and model chemistry.
    Brivio M; Schlosrich J; Ahmad M; Tolond C; Bugg TD
    Org Biomol Chem; 2009 Apr; 7(7):1368-73. PubMed ID: 19300822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mononuclear iron(III) complexes of 3N ligands in organized assemblies: spectral and redox properties and attainment of regioselective extradiol dioxygenase activity.
    Anitha N; Palaniandavar M
    Dalton Trans; 2011 Mar; 40(9):1888-901. PubMed ID: 21246129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic iron(III) complexes of facially and meridionally coordinating tridentate 3N ligands: tuning of regioselective extradiol dioxygenase activity in organized assemblies.
    Sankaralingam M; Saravanan N; Anitha N; Suresh E; Palaniandavar M
    Dalton Trans; 2014 May; 43(18):6828-41. PubMed ID: 24654008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New family of ferric spin clusters incorporating redox-active ortho-dioxolene ligands.
    Mulyana Y; Nafady A; Mukherjee A; Bircher R; Moubaraki B; Murray KS; Bond AM; Abrahams BF; Boskovic C
    Inorg Chem; 2009 Aug; 48(16):7765-81. PubMed ID: 19594116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conversion of extradiol aromatic ring-cleaving homoprotocatechuate 2,3-dioxygenase into an intradiol cleaving enzyme.
    Groce SL; Lipscomb JD
    J Am Chem Soc; 2003 Oct; 125(39):11780-1. PubMed ID: 14505375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.