BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17722895)

  • 1. Three-photon absorption cross-section enhancement in two symmetrical fluorene-based molecules.
    Liu J; Mao Y; Huang M; Gu Y; Zhang W
    J Phys Chem A; 2007 Sep; 111(37):9013-8. PubMed ID: 17722895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent effects on the three-photon absorption cross-section of a highly conjugated fluorene derivative.
    Cohanoschi I; Belfield KD; Toro C; Hernández FE
    J Chem Phys; 2006 Oct; 125(16):161102. PubMed ID: 17092056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of electron acceptor on three-photon absorption cross-section of the fluorene derivatives.
    Liu J; Li G; Wang Y
    J Phys Chem A; 2012 Jul; 116(28):7445-51. PubMed ID: 22765045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of the pi-electron conjugation length on the three-photon absorption cross section of fluorene derivatives.
    Cohanoschi I; Belfield KD; Toro C; Yao S; Hernández FE
    J Chem Phys; 2006 May; 124(19):194707. PubMed ID: 16729834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One- and two-photon absorption of three-coordinate compounds with different centers (B,Al,N) and a 2,2'-dipyridylnitrogen functional group.
    Liu XJ; Feng JK; Ren AM; Cheng H; Zhou X
    J Chem Phys; 2004 Nov; 121(17):8253-60. PubMed ID: 15511145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizations of transition dipoles, charge transfer, and electron-hole coherence on electronic state transitions between excited states for two-photon absorption.
    Sun M; Chen J; Xu H
    J Chem Phys; 2008 Feb; 128(6):064106. PubMed ID: 18282027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes.
    Belfield KD; Bondar MV; Hernandez FE; Przhonska OV; Yao S
    J Phys Chem B; 2007 Nov; 111(44):12723-9. PubMed ID: 17939706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of one- and two-photon absorption properties of platinum acetylide chromophores.
    Yang ZD; Feng JK; Ren AM
    Inorg Chem; 2008 Dec; 47(23):10841-50. PubMed ID: 18975934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules.
    Ohta K; Antonov L; Yamada S; Kamada K
    J Chem Phys; 2007 Aug; 127(8):084504. PubMed ID: 17764266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-photon absorption in three-dimensional chromophores based on [2.2]-paracyclophane.
    Bartholomew GP; Rumi M; Pond SJ; Perry JW; Tretiak S; Bazan GC
    J Am Chem Soc; 2004 Sep; 126(37):11529-42. PubMed ID: 15366899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of two-photon absorption properties of a series of ferrocene-based chromophores.
    Zhang XB; Feng JK; Ren AM; Sun CC
    J Phys Chem A; 2006 Nov; 110(44):12222-30. PubMed ID: 17078618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of one-, two-, and three-photon absorption properties for a series of Y-shaped molecules.
    Lin N; Zhao X; Yang JX; Jiang MH; Liu JC; Wang CK; Shi W; Meng J; Weng J
    J Chem Phys; 2006 Jan; 124(2):024704. PubMed ID: 16422623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon absorption in solution by means of time-dependent density-functional theory and the polarizable continuum model.
    Frediani L; Rinkevicius Z; Agren H
    J Chem Phys; 2005 Jun; 122(24):244104. PubMed ID: 16035743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon absorption and first nonlinear optical properties of ionic octupolar molecules: structure-function relationships and solvent effects.
    Ray PC; Leszczynski J
    J Phys Chem A; 2005 Aug; 109(30):6689-96. PubMed ID: 16834021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations on the octupolar molecules with enhanced two-photon absorption cross sections based on the Zn (II) and Cu (I) as centers.
    Liu XJ; Feng JK; Ren AM; Cheng H; Zhou X
    J Chem Phys; 2004 Jun; 120(24):11493-9. PubMed ID: 15268184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorene-based pi-conjugated oligomers for efficient three-photon excited photoluminescence and lasing.
    Feng XJ; Wu PL; Tam HL; Li KF; Wong MS; Cheah KW
    Chemistry; 2009 Nov; 15(43):11681-91. PubMed ID: 19774568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections.
    Kato S; Matsumoto T; Shigeiwa M; Gorohmaru H; Maeda S; Ishi-i T; Mataka S
    Chemistry; 2006 Mar; 12(8):2303-17. PubMed ID: 16363008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and quantum chemical studies of cooperative enhancement of three-photon absorption, optical limiting, and stabilization behaviors in multibranched and dendritic structures.
    Zheng Q; He GS; Baev A; Prasad PN
    J Phys Chem B; 2006 Aug; 110(30):14604-10. PubMed ID: 16869561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon absorption properties of self-assemblies of butadiyne-linked bis(imidazolylporphyrin).
    Ogawa K; Ohashi A; Kobuke Y; Kamada K; Ohta K
    J Phys Chem B; 2005 Nov; 109(46):22003-12. PubMed ID: 16853858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One- and two-photon absorptions in asymmetrically substituted free-base porphyrins: a density functional theory study.
    Chandra Jha P; Minaev B; Agren H
    J Chem Phys; 2008 Feb; 128(7):074302. PubMed ID: 18298144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.