BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17722916)

  • 1. Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance.
    Lin J; Lin J; Zhu Y
    Inorg Chem; 2007 Oct; 46(20):8372-8. PubMed ID: 17722916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of hexagonal BaTa2O6 nanorods and influence of defects on the photocatalytic activity.
    Xu T; Zhao X; Zhu Y
    J Phys Chem B; 2006 Dec; 110(51):25825-32. PubMed ID: 17181227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic activity of ZnWO₄: band structure, morphology and surface modification.
    Zhang C; Zhang H; Zhang K; Li X; Leng Q; Hu C
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14423-32. PubMed ID: 25121588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergetic Effects of Pd
    Chang L; Zhu G; Hassan QU; Cao B; Li S; Jia Y; Gao J; Zhang F; Wang Q
    Langmuir; 2019 Sep; 35(35):11265-11274. PubMed ID: 31403299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zn:In(OH)ySz solid solution nanoplates: synthesis, characterization, and photocatalytic mechanism.
    Zhang LS; Wong KH; Zhang DQ; Hu C; Yu JC; Chan CY; Wong PK
    Environ Sci Technol; 2009 Oct; 43(20):7883-8. PubMed ID: 19921909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnWO
    Pereira PFS; Gouveia AF; Assis M; de Oliveira RC; Pinatti IM; Penha M; Gonçalves RF; Gracia L; Andrés J; Longo E
    Phys Chem Chem Phys; 2018 Jan; 20(3):1923-1937. PubMed ID: 29297523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorination of ZnWO4 photocatalyst and influence on the degradation mechanism for 4-chlorophenol.
    Huang G; Zhang S; Xu T; Zhu Y
    Environ Sci Technol; 2008 Nov; 42(22):8516-21. PubMed ID: 19068841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Hydrothermal Synthesis of ZnWO₄ for Enhanced Photocatalytic Performance.
    Luo Z; Xu D; Zhang S; Shen J
    J Nanosci Nanotechnol; 2018 Oct; 18(10):7241-7245. PubMed ID: 29954566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite.
    Gao E; Wang W; Shang M; Xu J
    Phys Chem Chem Phys; 2011 Feb; 13(7):2887-93. PubMed ID: 21161101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-modified Bi(2)WO(6) nanostructures with improved photocatalytic activity under visible light.
    Li Y; Liu J; Huang X; Yu J
    Dalton Trans; 2010 Apr; 39(14):3420-5. PubMed ID: 20333333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data on SEM and TEM of controllable construction of ZnWO
    He H; Luo Z; Tang ZY; Yu C
    Data Brief; 2019 Aug; 25():104218. PubMed ID: 31367658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General synthesis and phase control of metal molybdate hydrates MMoO4.nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties.
    Ding Y; Wan Y; Min YL; Zhang W; Yu SH
    Inorg Chem; 2008 Sep; 47(17):7813-23. PubMed ID: 18681424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties.
    Wu XF; Song HY; Yoon JM; Yu YT; Chen YF
    Langmuir; 2009 Jun; 25(11):6438-47. PubMed ID: 19341284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and photocatalytic activity of stable nanocrystalline TiO(2) with high crystallinity and large surface area.
    Tian G; Fu H; Jing L; Tian C
    J Hazard Mater; 2009 Jan; 161(2-3):1122-30. PubMed ID: 18524477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties.
    Wang C; Shao C; Liu Y; Li X
    Inorg Chem; 2009 Feb; 48(3):1105-13. PubMed ID: 19127997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-free synthesis of BiVO4 nanostructures: II. Relationship between various microstructures for monoclinic BiVO4 and their photocatalytic activity for the degradation of rhodamine B under visible light.
    Ren L; Ma L; Jin L; Wang JB; Qiu M; Yu Y
    Nanotechnology; 2009 Oct; 20(40):405602. PubMed ID: 19738297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst.
    Huang PX; Wu F; Zhu BL; Gao XP; Zhu HY; Yan TY; Huang WP; Wu SH; Song DY
    J Phys Chem B; 2005 Oct; 109(41):19169-74. PubMed ID: 16853472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation.
    Wang Y; Huang Y; Ho W; Zhang L; Zou Z; Lee S
    J Hazard Mater; 2009 Sep; 169(1-3):77-87. PubMed ID: 19398265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water.
    Huang J; Ding K; Hou Y; Wang X; Fu X
    ChemSusChem; 2008; 1(12):1011-9. PubMed ID: 19053134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound assisted synthesis of monoclinic structured spindle BiVO4 particles with hollow structure and its photocatalytic property.
    Liu W; Cao L; Su G; Liu H; Wang X; Zhang L
    Ultrason Sonochem; 2010 Apr; 17(4):669-74. PubMed ID: 20053578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.