These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 17723232)
1. Estimation of adsorption isotherm parameters with inverse method--possible problems. Kaczmarski K J Chromatogr A; 2007 Dec; 1176(1-2):57-68. PubMed ID: 17723232 [TBL] [Abstract][Full Text] [Related]
2. A systematic investigation of algorithm impact in preparative chromatography with experimental verifications. Enmark M; Arnell R; Forssén P; Samuelsson J; Kaczmarski K; Fornstedt T J Chromatogr A; 2011 Feb; 1218(5):662-72. PubMed ID: 21194701 [TBL] [Abstract][Full Text] [Related]
3. Numerical determination of competitive adsorption isotherm of mandelic acid enantiomers on cellulose-based chiral stationary phase. Zhang Y; Rohani S; Ray AK J Chromatogr A; 2008 Aug; 1202(1):34-9. PubMed ID: 18602639 [TBL] [Abstract][Full Text] [Related]
4. Martin-Synge algorithm for the solution of equilibrium-dispersive model of liquid chromatography. Horváth K; Fairchild JN; Kaczmarski K; Guiochon G J Chromatogr A; 2010 Dec; 1217(52):8127-35. PubMed ID: 21092975 [TBL] [Abstract][Full Text] [Related]
5. Theoretical study of the accuracy of the pulse method, frontal analysis, and frontal analysis by characteristic points for the determination of single component adsorption isotherms. Andrzejewska A; Kaczmarski K; Guiochon G J Chromatogr A; 2009 Feb; 1216(7):1067-83. PubMed ID: 19147153 [TBL] [Abstract][Full Text] [Related]
6. Fast estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography II: the competitive case. Åsberg D; Leśko M; Enmark M; Samuelsson J; Kaczmarski K; Fornstedt T J Chromatogr A; 2013 Nov; 1314():70-6. PubMed ID: 24050597 [TBL] [Abstract][Full Text] [Related]
7. Determination of competitive isotherms of enantiomers by a hybrid inverse method using overloaded band profiles and the periodic state of the simulated moving-bed process. Araújo JM; Rodrigues RC; Mota JP J Chromatogr A; 2008 May; 1189(1-2):302-13. PubMed ID: 18243230 [TBL] [Abstract][Full Text] [Related]
8. Accurate and rapid estimation of adsorption isotherms in liquid chromatography using the inverse method on plateaus. Arnell R; Forssén P; Fornstedt T J Chromatogr A; 2005 Dec; 1099(1-2):167-74. PubMed ID: 16297923 [TBL] [Abstract][Full Text] [Related]
9. Systematic errors in the measurement of adsorption isotherms by frontal analysis Impact of the choice of column hold-up volume, range and density of the data points. Gritti F; Guiochon G J Chromatogr A; 2005 Dec; 1097(1-2):98-115. PubMed ID: 16298189 [TBL] [Abstract][Full Text] [Related]
10. Limits of the numerical estimation of the adsorption energy distribution from adsorption isotherm data using the expectation-maximization method. Gritti F; Guiochon G J Chromatogr A; 2007 Mar; 1144(2):208-20. PubMed ID: 17275011 [TBL] [Abstract][Full Text] [Related]
11. A model free method for estimation of complicated adsorption isotherms in liquid chromatography. Forssén P; Fornstedt T J Chromatogr A; 2015 Aug; 1409():108-15. PubMed ID: 26209195 [TBL] [Abstract][Full Text] [Related]
12. Effect of temperature on the adsorption behavior of tryptophan in reversed-phase liquid chromatography. Ahmad T; Guiochon G J Chromatogr A; 2006 Oct; 1129(2):174-88. PubMed ID: 16859697 [TBL] [Abstract][Full Text] [Related]
13. Effect of the mobile phase composition on the adsorption behavior of tryptophan in reversed-phase liquid chromatography. Ahmad T; Guiochon G J Chromatogr A; 2006 May; 1114(1):111-22. PubMed ID: 16530206 [TBL] [Abstract][Full Text] [Related]
14. Determination of competitive adsorption isotherm parameters of pindolol enantiomers on alpha1-acid glycoprotein chiral stationary phase. Zhang Y; Hidajat K; Ray AK J Chromatogr A; 2006 Oct; 1131(1-2):176-84. PubMed ID: 16919658 [TBL] [Abstract][Full Text] [Related]
15. Estimation of single solute adsorption isotherms applying the nonlinear frequency response method using non-optimal frequencies. Ilić M; Petkovska M; Seidel-Morgenstern A J Chromatogr A; 2008 Jul; 1200(2):183-92. PubMed ID: 18555261 [TBL] [Abstract][Full Text] [Related]
16. Determination of competitive adsorption isotherms applying the nonlinear frequency response method. Part II. Experimental demonstration. Ilić M; Petkovska M; Seidel-Morgenstern A J Chromatogr A; 2009 Aug; 1216(33):6108-18. PubMed ID: 19586634 [TBL] [Abstract][Full Text] [Related]
17. General theory of indirect detection in chromatography. Forssén P; Fornstedt T J Chromatogr A; 2006 Sep; 1126(1-2):268-75. PubMed ID: 16890232 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the adsorption mechanism of a peptide in reversed phase liquid chromatography, from pH controlled and uncontrolled solutions. Andrzejewska A; Gritti F; Guiochon G J Chromatogr A; 2009 May; 1216(18):3992-4004. PubMed ID: 19328489 [TBL] [Abstract][Full Text] [Related]
19. Impact of an error in the column hold-up time for correct adsorption isotherm determination in chromatography I. Even a small error can lead to a misunderstanding of the retention mechanism. Samuelsson J; Sajonz P; Fornstedt T J Chromatogr A; 2008 May; 1189(1-2):19-31. PubMed ID: 17981287 [TBL] [Abstract][Full Text] [Related]
20. Numerical determination of the adsorption isotherms of tryptophan at different temperatures and mobile phase compositions. Ahmad T; Guiochon G J Chromatogr A; 2007 Feb; 1142(2):148-63. PubMed ID: 17229430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]