These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
869 related articles for article (PubMed ID: 17723317)
1. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
2. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters. Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852 [TBL] [Abstract][Full Text] [Related]
3. Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse. Misra AK; Sharma SK; Lucey PG Appl Spectrosc; 2006 Feb; 60(2):223-8. PubMed ID: 16542575 [TBL] [Abstract][Full Text] [Related]
4. Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Sharma SK; Misra AK; Lucey PG; Wiens RC; Clegg SM Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1036-45. PubMed ID: 17723318 [TBL] [Abstract][Full Text] [Related]
5. Raman spectroscopy in chemical bioanalysis. Baena JR; Lendl B Curr Opin Chem Biol; 2004 Oct; 8(5):534-9. PubMed ID: 15450497 [TBL] [Abstract][Full Text] [Related]
6. Stand-off Raman detection using dispersive and tunable filter based systems. Carter JC; Scaffidi J; Burnett S; Vasser B; Sharma SK; Angel SM Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2288-98. PubMed ID: 15967708 [TBL] [Abstract][Full Text] [Related]
7. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575 [TBL] [Abstract][Full Text] [Related]
8. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters. Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922 [TBL] [Abstract][Full Text] [Related]
9. Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Osticioli I; Mendes NF; Nevin A; Gil FP; Becucci M; Castellucci E Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):525-31. PubMed ID: 19129003 [TBL] [Abstract][Full Text] [Related]
10. Time-resolved Raman spectroscopy for in situ planetary mineralogy. Blacksberg J; Rossman GR; Gleckler A Appl Opt; 2010 Sep; 49(26):4951-62. PubMed ID: 20830184 [TBL] [Abstract][Full Text] [Related]
11. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Sharma SK; Misra AK; Lucey PG; Lentz RC Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):468-76. PubMed ID: 19084470 [TBL] [Abstract][Full Text] [Related]
12. Remote Raman and fluorescence studies of mineral samples. Bozlee BJ; Misra AK; Sharma SK; Ingram M Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2342-8. PubMed ID: 16029855 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Arctic ices by remote Raman spectroscopy. Rull F; Vegas A; Sansano A; Sobron P Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):148-55. PubMed ID: 21606001 [TBL] [Abstract][Full Text] [Related]
14. UV Raman spectroscopy--a technique for biological and mineralogical in situ planetary studies. Tarcea N; Harz M; Rösch P; Frosch T; Schmitt M; Thiele H; Hochleitner R; Popp J Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1029-35. PubMed ID: 17890146 [TBL] [Abstract][Full Text] [Related]
15. Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Sharma SK; Lucey PG; Ghosh M; Hubble HW; Horton KA Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2391-407. PubMed ID: 12909150 [TBL] [Abstract][Full Text] [Related]
16. Pulsed remote Raman system for daytime measurements of mineral spectra. Misra AK; Sharma SK; Chio CH; Lucey PG; Lienert B Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2281-7. PubMed ID: 16029850 [TBL] [Abstract][Full Text] [Related]
17. Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Sharma SK; Misra AK; Sharma B Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2404-12. PubMed ID: 16029864 [TBL] [Abstract][Full Text] [Related]
18. Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Jehlicka J; Vítek P; Edwards HG; Heagraves M; Capoun T Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):410-9. PubMed ID: 18993111 [TBL] [Abstract][Full Text] [Related]
19. A Two Components Approach for Long Range Remote Raman and Laser-Induced Breakdown (LIBS) Spectroscopy Using Low Laser Pulse Energy. Misra AK; Acosta-Maeda TE; Porter JN; Berlanga G; Muchow D; Sharma SK; Chee B Appl Spectrosc; 2019 Mar; 73(3):320-328. PubMed ID: 30347998 [TBL] [Abstract][Full Text] [Related]
20. Next generation laser-based standoff spectroscopy techniques for Mars exploration. Gasda PJ; Acosta-Maeda TE; Lucey PG; Misra AK; Sharma SK; Taylor GJ Appl Spectrosc; 2015; 69(2):173-92. PubMed ID: 25587811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]