BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17723668)

  • 1. A microfluidic protease activity assay based on the detection of fluorescence polarization.
    Kim JH; Shin HJ; Cho H; Kwak SM; Cho H; Kim TS; Kang JY; Yang EG
    Anal Chim Acta; 2006 Sep; 577(2):171-7. PubMed ID: 17723668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BODIPY-alpha-casein, a pH-independent protein substrate for protease assays using fluorescence polarization.
    Schade SZ; Jolley ME; Sarauer BJ; Simonson LG
    Anal Biochem; 1996 Dec; 243(1):1-7. PubMed ID: 8954519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new protease activity assay using fluorescence polarization.
    Bolger R; Checovich W
    Biotechniques; 1994 Sep; 17(3):585-9. PubMed ID: 7818914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip.
    Yang M; Yang J; Li CW; Zhao J
    Lab Chip; 2002 Aug; 2(3):158-63. PubMed ID: 15100827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip.
    Hong JW; Chung KH; Yoon HC
    Analyst; 2008 Apr; 133(4):499-504. PubMed ID: 18365120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast immobilization of probe beads by dielectrophoresis-controlled adhesion in a versatile microfluidic platform for affinity assay.
    Auerswald J; Widmer D; de Rooij NF; Sigrist A; Staubli T; Stöckli T; Knapp HF
    Electrophoresis; 2005 Oct; 26(19):3697-705. PubMed ID: 16136524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated microfluidic platform for sensitive and rapid detection of biological toxins.
    Meagher RJ; Hatch AV; Renzi RF; Singh AK
    Lab Chip; 2008 Dec; 8(12):2046-53. PubMed ID: 19023467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic polyacrylamide gel electrophoresis with in situ immunoblotting for native protein analysis.
    He M; Herr AE
    Anal Chem; 2009 Oct; 81(19):8177-84. PubMed ID: 19731927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
    Flachsbart BR; Wong K; Iannacone JM; Abante EN; Vlach RL; Rauchfuss PA; Bohn PW; Sweedler JV; Shannon MA
    Lab Chip; 2006 May; 6(5):667-74. PubMed ID: 16652183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amperometric quantification based on serial dilution microfluidic systems.
    Stephan K; Pittet P; Sigaud M; Renaud L; Vittori O; Morin P; Ouaini N; Ferrigno R
    Analyst; 2009 Mar; 134(3):472-7. PubMed ID: 19238282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential processing from cell lysis to protein assay on a chip enabling the optimization of an F(1)-ATPase single molecule assay condition.
    Nakayama T; Namura M; Tabata KV; Noji H; Yokokawa R
    Lab Chip; 2009 Dec; 9(24):3567-73. PubMed ID: 20024037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices.
    Sung JH; Choi JR; Kim D; Shuler ML
    Biotechnol Bioeng; 2009 Oct; 104(3):516-25. PubMed ID: 19575443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of label free protein concentration and conformational changes using a microfluidic UV-LED method.
    Lee J; Tripathi A
    Biotechnol Prog; 2007; 23(6):1506-12. PubMed ID: 17994758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel.
    Foley JO; Mashadi-Hossein A; Fu E; Finlayson BA; Yager P
    Lab Chip; 2008 Apr; 8(4):557-64. PubMed ID: 18369510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic chip-based valveless flow injection analysis system with gravity-driven flows.
    Huang YZ; Du WB; Pan JZ; Fang Q
    Analyst; 2008 Sep; 133(9):1237-41. PubMed ID: 18709200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.