These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The evolution of foraging rate across local and geographic gradients in predation risk and competition. Urban MC; Richardson JL Am Nat; 2015 Jul; 186(1):E16-32. PubMed ID: 26098352 [TBL] [Abstract][Full Text] [Related]
5. The growth-predation risk trade-off under a growing gape-limited predation threat. Urban MC Ecology; 2007 Oct; 88(10):2587-97. PubMed ID: 18027761 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web. Davenport JM; Chalcraft DR J Anim Ecol; 2012 Jan; 81(1):242-50. PubMed ID: 21950407 [TBL] [Abstract][Full Text] [Related]
7. The evolution of prey body size reaction norms in diverse communities. Urban MC J Anim Ecol; 2008 Mar; 77(2):346-55. PubMed ID: 18081780 [TBL] [Abstract][Full Text] [Related]
8. Evolution mediates the effects of apex predation on aquatic food webs. Urban MC Proc Biol Sci; 2013 Jul; 280(1763):20130859. PubMed ID: 23720548 [TBL] [Abstract][Full Text] [Related]
9. Differential vulnerability to predation and refuge use in competing larval salamanders. Walls SC Oecologia; 1995 Jan; 101(1):86-93. PubMed ID: 28306980 [TBL] [Abstract][Full Text] [Related]
10. Central-place foraging and ecological effects of an invasive predator across multiple habitats. Benkwitt CE Ecology; 2016 Oct; 97(10):2729-2739. PubMed ID: 27859117 [TBL] [Abstract][Full Text] [Related]
11. Density of an intraguild predator mediates feeding group size, intraguild egg predation, and intra- and interspecific competition. Burley LA; Moyer AT; Petranka JW Oecologia; 2006 Jul; 148(4):641-9. PubMed ID: 16514532 [TBL] [Abstract][Full Text] [Related]
12. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study. Klecka J; Boukal DS J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526 [TBL] [Abstract][Full Text] [Related]
13. The effect of community composition on persistence of prey with their predators in an assemblage of pond-breeding amphibians. Walls SC; Williams MG Oecologia; 2001 Jun; 128(1):134-141. PubMed ID: 28547083 [TBL] [Abstract][Full Text] [Related]
14. An examination of multiple factors affecting community structure in an aquatic amphibian community. Cortwright SA; Nelson CE Oecologia; 1990 May; 83(1):123-131. PubMed ID: 28313252 [TBL] [Abstract][Full Text] [Related]
15. Foraging time and spatial patterns of predation in experimental populations : A comparative study of three mite predator-prey systems (Acari: Phytoseiidae, Tetranychidae). Zhang ZQ; Sanderson JP; Nyrop JP Oecologia; 1992 May; 90(2):185-196. PubMed ID: 28313713 [TBL] [Abstract][Full Text] [Related]
16. Microgeographic divergence of functional responses among salamanders under antagonistic selection from apex predators. Urban MC; Freidenfelds NA; Richardson JL Proc Biol Sci; 2020 Nov; 287(1938):20201665. PubMed ID: 33171095 [TBL] [Abstract][Full Text] [Related]
17. Color change and color-dependent behavior in response to predation risk in the salamander sister species Ambystoma barbouri and Ambystoma texanum. Garcia TS; Sih A Oecologia; 2003 Sep; 137(1):131-9. PubMed ID: 12838403 [TBL] [Abstract][Full Text] [Related]
18. Prey size-distributions and size-specific foraging success of Ambystoma larvae. Smith CK; Petranka JW Oecologia; 1987 Jan; 71(2):239-244. PubMed ID: 28312251 [TBL] [Abstract][Full Text] [Related]
19. Scaling the effects of predation and disturbance in a patchy environment. Lancaster J Oecologia; 1996 Aug; 107(3):321-331. PubMed ID: 28307260 [TBL] [Abstract][Full Text] [Related]
20. Spatial Heterogeneity, Indirect Interactions, and the Coexistence of Prey Species. Holt RD Am Nat; 1984 Sep.; 124(3):377-406. PubMed ID: 29519131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]