BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17725485)

  • 21. Abrogation of prostaglandin E-EP4 signaling in osteoblasts prevents the bone destruction induced by human prostate cancer metastases.
    Watanabe K; Tominari T; Hirata M; Matsumoto C; Maruyama T; Murphy G; Nagase H; Miyaura C; Inada M
    Biochem Biophys Res Commun; 2016 Sep; 478(1):154-161. PubMed ID: 27450806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of vitamin D analogs as therapeutic agents for prostate cancer.
    Chen TC; Holick MF; Lokeshwar BL; Burnstein KL; Schwartz GG
    Recent Results Cancer Res; 2003; 164():273-88. PubMed ID: 12899529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vitamin D deficiency promotes prostate cancer growth in bone.
    Zheng Y; Zhou H; Ooi LL; Snir AD; Dunstan CR; Seibel MJ
    Prostate; 2011 Jun; 71(9):1012-21. PubMed ID: 21541977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. VDR in Osteoblast-Lineage Cells Primarily Mediates Vitamin D Treatment-Induced Increase in Bone Mass by Suppressing Bone Resorption.
    Nakamichi Y; Udagawa N; Horibe K; Mizoguchi T; Yamamoto Y; Nakamura T; Hosoya A; Kato S; Suda T; Takahashi N
    J Bone Miner Res; 2017 Jun; 32(6):1297-1308. PubMed ID: 28177161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osteoblasts suppress high bone turnover caused by osteolytic breast cancer in-vitro.
    Krawetz R; Wu YE; Rancourt DE; Matyas J
    Exp Cell Res; 2009 Aug; 315(14):2333-42. PubMed ID: 19433087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host-derived RANKL is responsible for osteolysis in a C4-2 human prostate cancer xenograft model of experimental bone metastases.
    Morrissey C; Kostenuik PL; Brown LG; Vessella RL; Corey E
    BMC Cancer; 2007 Aug; 7():148. PubMed ID: 17683568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism.
    Schulze J; Albers J; Baranowsky A; Keller J; Spiro A; Streichert T; Zustin J; Amling M; Schinke T
    Bone; 2010 Feb; 46(2):524-33. PubMed ID: 19796718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Id1 knockdown on formation of osteolytic bone lesions by prostate cancer PC3 cells in vivo.
    Zhang Z; Li K; Zhang X; Fang Z; Xiong W; Chen Q; Chen W; Li F
    J Huazhong Univ Sci Technolog Med Sci; 2012 Jun; 32(3):364-369. PubMed ID: 22684559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [
    Janssen JC; Woythal N; Meißner S; Prasad V; Brenner W; Diederichs G; Hamm B; Makowski MR
    Mol Imaging Biol; 2017 Dec; 19(6):933-943. PubMed ID: 28707038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences of osteoblastic bone metastases and osteolytic bone metastases in clinical features and molecular characteristics.
    Fang J; Xu Q
    Clin Transl Oncol; 2015 Mar; 17(3):173-9. PubMed ID: 25351174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteoprotegerin in prostate cancer bone metastasis.
    Corey E; Brown LG; Kiefer JA; Quinn JE; Pitts TE; Blair JM; Vessella RL
    Cancer Res; 2005 Mar; 65(5):1710-8. PubMed ID: 15753366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone-targeting agents in prostate cancer.
    Suzman DL; Boikos SA; Carducci MA
    Cancer Metastasis Rev; 2014 Sep; 33(2-3):619-28. PubMed ID: 24398856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathogenesis of osteoblastic bone metastases from prostate cancer.
    Ibrahim T; Flamini E; Mercatali L; Sacanna E; Serra P; Amadori D
    Cancer; 2010 Mar; 116(6):1406-18. PubMed ID: 20108337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting factors involved in bone remodeling as treatment strategies in prostate cancer bone metastasis.
    Vessella RL; Corey E
    Clin Cancer Res; 2006 Oct; 12(20 Pt 2):6285s-6290s. PubMed ID: 17062715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TMPRSS2:ERG gene fusion expression regulates bone markers and enhances the osteoblastic phenotype of prostate cancer bone metastases.
    Delliaux C; Tian TV; Bouchet M; Fradet A; Vanpouille N; Flourens A; Deplus R; Villers A; Leroy X; Clézardin P; de Launoit Y; Bonnelye E; Duterque-Coquillaud M
    Cancer Lett; 2018 Dec; 438():32-43. PubMed ID: 30201302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vitamin D deficiency promotes human breast cancer growth in a murine model of bone metastasis.
    Ooi LL; Zhou H; Kalak R; Zheng Y; Conigrave AD; Seibel MJ; Dunstan CR
    Cancer Res; 2010 Mar; 70(5):1835-44. PubMed ID: 20160035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment and validation of an in vitro co-culture model to study the interactions between bone and prostate cancer cells.
    Nordstrand A; Nilsson J; Tieva A; Wikström P; Lerner UH; Widmark A
    Clin Exp Metastasis; 2009; 26(8):945-53. PubMed ID: 19728119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effects of 1,25-dihydroxyvitamin D3-analogs on osteoblast-like cells and on in vitro bone resorption.
    van den Bemd GJ; Pols HA; Birkenhäger JC; Kleinekoort WM; van Leeuwen JP
    J Steroid Biochem Mol Biol; 1995 Dec; 55(3-4):337-46. PubMed ID: 8541230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preclinical evaluation of zoledronate using an in vitro mimetic cellular model for breast cancer metastatic bone disease.
    Dedes PG; Kanakis I; Gialeli Ch; Theocharis AD; Tsegenidis T; Kletsas D; Tzanakakis GN; Karamanos NK
    Biochim Biophys Acta; 2013 Jun; 1830(6):3625-34. PubMed ID: 23395844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New 19-nor-(20S)-1alpha,25-dihydroxyvitamin D3 analogs strongly stimulate osteoclast formation both in vivo and in vitro.
    Sato M; Nakamichi Y; Nakamura M; Sato N; Ninomiya T; Muto A; Nakamura H; Ozawa H; Iwasaki Y; Kobayashi E; Shimizu M; DeLuca HF; Takahashi N; Udagawa N
    Bone; 2007 Feb; 40(2):293-304. PubMed ID: 17070129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.