BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17725643)

  • 41. TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau.
    Scaramozzino F; Peterson DW; Farmer P; Gerig JT; Graves DJ; Lew J
    Biochemistry; 2006 Mar; 45(11):3684-91. PubMed ID: 16533051
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils.
    Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T
    Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural and microtubule binding properties of tau mutants of frontotemporal dementias.
    Fischer D; Mukrasch MD; von Bergen M; Klos-Witkowska A; Biernat J; Griesinger C; Mandelkow E; Zweckstetter M
    Biochemistry; 2007 Mar; 46(10):2574-82. PubMed ID: 17297915
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein.
    Sibille N; Huvent I; Fauquant C; Verdegem D; Amniai L; Leroy A; Wieruszeski JM; Lippens G; Landrieu I
    Proteins; 2012 Feb; 80(2):454-62. PubMed ID: 22072628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation.
    Barré P; Eliezer D
    Protein Sci; 2013 Aug; 22(8):1037-48. PubMed ID: 23740819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers.
    Yuzwa SA; Cheung AH; Okon M; McIntosh LP; Vocadlo DJ
    J Mol Biol; 2014 Apr; 426(8):1736-52. PubMed ID: 24444746
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMR spectroscopy of the neuronal tau protein: normal function and implication in Alzheimer's disease.
    Landrieu I; Leroy A; Smet-Nocca C; Huvent I; Amniai L; Hamdane M; Sibille N; Buée L; Wieruszeski JM; Lippens G
    Biochem Soc Trans; 2010 Aug; 38(4):1006-11. PubMed ID: 20658994
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neighbored phosphorylation sites as PHF-tau specific markers in Alzheimer's disease.
    Singer D; Lehmann J; Hanisch K; Härtig W; Hoffmann R
    Biochem Biophys Res Commun; 2006 Aug; 346(3):819-28. PubMed ID: 16781671
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tau glycation is involved in aggregation of the protein but not in the formation of filaments.
    Ledesma MD; Pérez M; Colaco C; Avila J
    Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1111-6. PubMed ID: 9846893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of the VQIVYK peptide in tau protein phosphorylation.
    Perez M; Santa-María I; Tortosa E; Cuadros R; Del Valle M; Hernández F; Moreno FJ; Avila J
    J Neurochem; 2007 Nov; 103(4):1447-60. PubMed ID: 17680993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular hairpin: a possible model for inhibition of tau aggregation by tannic acid.
    Yao J; Gao X; Sun W; Yao T; Shi S; Ji L
    Biochemistry; 2013 Mar; 52(11):1893-902. PubMed ID: 23442089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphorylation regulates fibrillation of an aggregation core peptide in the second repeat of microtubule-binding domain of human tau.
    Inoue M; Kaida S; Nakano S; Annoni C; Nakata E; Konno T; Morii T
    Bioorg Med Chem; 2014 Nov; 22(22):6471-80. PubMed ID: 25440728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tyrosine- versus serine-phosphorylation leads to conformational changes in a synthetic tau peptide.
    Fabian H; Otvos L; Szendrei GI; Lang E; Mantsch HH
    J Biomol Struct Dyn; 1994 Dec; 12(3):573-9. PubMed ID: 7537044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteolytic degradation of microtubule associated protein tau by thrombin.
    Olesen OF
    Biochem Biophys Res Commun; 1994 Jun; 201(2):716-21. PubMed ID: 8003007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular dynamics simulation of the phosphorylation-induced conformational changes of a tau peptide fragment.
    Lyons AJ; Gandhi NS; Mancera RL
    Proteins; 2014 Sep; 82(9):1907-23. PubMed ID: 24577753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38delta at Thr50 promotes microtubule assembly.
    Feijoo C; Campbell DG; Jakes R; Goedert M; Cuenda A
    J Cell Sci; 2005 Jan; 118(Pt 2):397-408. PubMed ID: 15632108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Global hairpin folding of tau in solution.
    Jeganathan S; von Bergen M; Brutlach H; Steinhoff HJ; Mandelkow E
    Biochemistry; 2006 Feb; 45(7):2283-93. PubMed ID: 16475817
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insight into potential Cu(II)-binding motifs in the four pseudorepeats of tau protein.
    Shin BK; Saxena S
    J Phys Chem B; 2011 Dec; 115(50):15067-78. PubMed ID: 22085212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hyperphosphorylation of tau and protein phosphatases in Alzheimer disease.
    Liu F; Liang Z; Gong CX
    Panminerva Med; 2006 Jun; 48(2):97-108. PubMed ID: 16953147
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Site-specific pseudophosphorylation modulates the rate of tau filament dissociation.
    Necula M; Kuret J
    FEBS Lett; 2005 Feb; 579(6):1453-7. PubMed ID: 15733856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.