These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17725702)

  • 1. Oxygenation-ozonation of blood during extracorporeal circulation: in vitro efficiency of a new gas exchange device.
    Bocci V; Zanardi I; Travagli V; Di Paolo N
    Artif Organs; 2007 Sep; 31(9):743-8. PubMed ID: 17725702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are dialysis devices usable as ozone gas exchangers?
    Travagli V; Zanardi I; Gabbrielli A; Paccagnini E; Bocci V
    Artif Organs; 2010 Feb; 34(2):170-5. PubMed ID: 19817737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a MedArray silicone hollow fiber oxygenator.
    LaFayette NG; Schewe RE; Montoya JP; Cook KE
    ASAIO J; 2009; 55(4):382-7. PubMed ID: 19381081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress toward an ambulatory pump-lung.
    Wu ZJ; Gartner M; Litwak KN; Griffith BP
    J Thorac Cardiovasc Surg; 2005 Oct; 130(4):973-8. PubMed ID: 16214507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intravascular gas transfer. Membrane surface area and sweeping gas flows are of prime importance.
    von Segesser LK; Tkebuchava T; Marty B; Leskosek B; Tevaearai H
    ASAIO J; 1997; 43(5):M457-9. PubMed ID: 9360084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ozonation of blood during extracorporeal circulation. I. Rationale, methodology and preliminary studies.
    Bocci V; Di Paolo N; Garosi G; Aldinucci C; Borrelli E; Valacchi G; Cappelli F; Guerri L; Gavioli G; Corradeschi F; Rossi R; Giannerini F; Di Simplicio P
    Int J Artif Organs; 1999 Sep; 22(9):645-51. PubMed ID: 10532435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Branched vascular network architecture: a new approach to lung assist device technology.
    Hoganson DM; Anderson JL; Weinberg EF; Swart E; Orrick BK; Borenstein JT; Vacanti JP
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):990-5. PubMed ID: 20591445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Diprivan (propofol) on phosphorylcholine surfaces during cardiopulmonary bypass--an in vitro investigation.
    Myers GJ; Voorhees C; Eke B; Johnstone R
    Perfusion; 2009 Sep; 24(5):349-55. PubMed ID: 19939908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an oxygenator with enhanced gas transfer efficiency.
    Rajasubramanian S; Nelson KD; Shastri P; Constantinescu A; Kulkarni P; Jessen ME; Eberhart RC
    ASAIO J; 1997; 43(5):M710-4. PubMed ID: 9360139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and ex vivo blood compatibility study of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer-coated hemodialysis hollow fibers.
    Iwasaki Y; Nakabayashi N; Ishihara K
    J Artif Organs; 2003; 6(4):260-6. PubMed ID: 14691668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracorporeal blood oxygenation and ozonation: clinical and biological implications of ozone therapy.
    Di Paolo N; Gaggiotti E; Galli F
    Redox Rep; 2005; 10(3):121-30. PubMed ID: 16156950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intravascular blood oxygenation using hollow fibers in a disk-shaped configuration: experimental evaluation of the relationship between porosity and performance.
    Cattaneo GF; Reul H; Schmitz-Rode T; Steinseifer U
    ASAIO J; 2006; 52(2):180-5. PubMed ID: 16557105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency membrane oxygenator.
    Servas FM; Diettrich LJ; Jones K; Whittaker D; Curtis R
    Trans Am Soc Artif Intern Organs; 1983; 29():231-6. PubMed ID: 6424304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A testing device for evaluation of gas transfer through synthetic membranes.
    Lautier A; Laurent D; Granger A; Sausse A
    J Biomed Mater Res; 1970 Jun; 4(2):189-221. PubMed ID: 5421050
    [No Abstract]   [Full Text] [Related]  

  • 15. Thrombus formation and microaggregate removal during extracorporeal membrane oxygenation.
    Guidoin RG; Kenedi RM; Trudell L; Galleti P; Blais P
    J Biomed Mater Res; 1979 Mar; 13(2):317-35. PubMed ID: 429397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic respiratory assist device with high gas permeance for artificial lung applications.
    Kniazeva T; Hsiao JC; Charest JL; Borenstein JT
    Biomed Microdevices; 2011 Apr; 13(2):315-23. PubMed ID: 21113664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Membrane type artificial lung--the improved gas exchange capability of the artificial membrane].
    Kato S; Shimizu T; Iizuka S; Tajika T
    Kyobu Geka; 1971 Oct; 24(10):714-8. PubMed ID: 5165819
    [No Abstract]   [Full Text] [Related]  

  • 18. Biochemical modifications induced in human blood by oxygenation-ozonation.
    Bocci V; Aldinucci C
    J Biochem Mol Toxicol; 2006; 20(3):133-8. PubMed ID: 16788956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ozonation of blood during extracorporeal circulation. II. Comparative analysis of several oxygenator-ozonators and selection of one type.
    Bocci V; Di Paolo N; Borrelli E; Larini A; Cappelletti F
    Int J Artif Organs; 2001 Dec; 24(12):890-7. PubMed ID: 11831595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of phosphorylcholine coating on extracorporeal circulation management and postoperative outcome: a double-blind randomized study.
    Lorusso R; De Cicco G; Totaro P; Gelsomino S
    Interact Cardiovasc Thorac Surg; 2009 Jan; 8(1):7-11. PubMed ID: 18728037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.