BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17725801)

  • 1. Changes in Drosophila melanogaster midgut proteins in response to dietary Bowman-Birk inhibitor.
    Li HM; Margam V; Muir WM; Murdock LL; Pittendrigh BR
    Insect Mol Biol; 2007 Oct; 16(5):539-49. PubMed ID: 17725801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bowman-Birk inhibitor affects pathways associated with energy metabolism in Drosophila melanogaster.
    Li HM; Sun L; Mittapalli O; Muir WM; Xie J; Wu J; Schemerhorn BJ; Jannasch A; Chen JY; Zhang F; Adamec J; Murdock LL; Pittendrigh BR
    Insect Mol Biol; 2010 Jun; 19(3):303-13. PubMed ID: 20113373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut.
    Li HM; Sun L; Mittapalli O; Muir WM; Xie J; Wu J; Schemerhorn BJ; Sun W; Pittendrigh BR; Murdock LL
    Insect Mol Biol; 2009 Feb; 18(1):21-31. PubMed ID: 19196346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee (Apis mellifera L.).
    Sagili RR; Pankiw T; Zhu-Salzman K
    J Insect Physiol; 2005 Sep; 51(9):953-7. PubMed ID: 15927200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic profiles of Drosophila melanogaster third instar larval midgut and responses to oxidative stress.
    Li HM; Buczkowski G; Mittapalli O; Xie J; Wu J; Westerman R; Schemerhorn BJ; Murdock LL; Pittendrigh BR
    Insect Mol Biol; 2008 Aug; 17(4):325-39. PubMed ID: 18651915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential intracellular target proteins of the anticarcinogenic Bowman Birk protease inhibitor identified by affinity chromatography.
    Billings PC; St Clair W; Owen AJ; Kennedy AR
    Cancer Res; 1988 Apr; 48(7):1798-802. PubMed ID: 3280120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteases occurring in the cell membrane: a possible cell receptor for the Bowman-Birk type of protease inhibitors.
    Yavelow J; Caggana M; Beck KA
    Cancer Res; 1987 Mar; 47(6):1598-601. PubMed ID: 3545448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The radioprotector Bowman-Birk proteinase inhibitor stimulates DNA repair via epidermal growth factor receptor phosphorylation and nuclear transport.
    Dittmann K; Mayer C; Kehlbach R; Rodemann HP
    Radiother Oncol; 2008 Mar; 86(3):375-82. PubMed ID: 18237807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biochemical and functional food properties of the bowman-birk inhibitor.
    Losso JN
    Crit Rev Food Sci Nutr; 2008 Jan; 48(1):94-118. PubMed ID: 18274967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of atrazine exposure in Drosophila melanogaster (Diptera: Drosophilidae).
    Thornton BJ; Elthon TE; Cerny RL; Siegfried BD
    Chemosphere; 2010 Sep; 81(2):235-41. PubMed ID: 20609461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen lowers the sulfur amino acid content of soybean (Glycine max [L.] Merr.) by regulating the accumulation of Bowman-Birk protease inhibitor.
    Krishnan HB; Bennett JO; Kim WS; Krishnan AH; Mawhinney TP
    J Agric Food Chem; 2005 Aug; 53(16):6347-54. PubMed ID: 16076117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibition of cathepsin G and elastase from human granulocytes by multiple forms of the Bowman-Birk type of soy inhibitor].
    Larionova NI; Gladysheva IP; Tikhonova TV; Kazanskaia NF
    Biokhimiia; 1993 Aug; 58(9):1437-44. PubMed ID: 8218567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative growth control of osteosarcoma cell by Bowman-Birk protease inhibitor from soybean; involvement of connexin 43.
    Saito T; Sato H; Virgona N; Hagiwara H; Kashiwagi K; Suzuki K; Asano R; Yano T
    Cancer Lett; 2007 Aug; 253(2):249-57. PubMed ID: 17343982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory properties and solution structure of a potent Bowman-Birk protease inhibitor from lentil (Lens culinaris, L) seeds.
    Ragg EM; Galbusera V; Scarafoni A; Negri A; Tedeschi G; Consonni A; Sessa F; Duranti M
    FEBS J; 2006 Sep; 273(17):4024-39. PubMed ID: 16889634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of soybean Bowman-Birk inhibitor from different sources.
    Gladysheva IP; Balabushevich NG; Moroz NA; Larionova NI
    Biochemistry (Mosc); 2000 Feb; 65(2):198-203. PubMed ID: 10713547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the Bowman-Birk inhibitor from Pisum sativum affects intestinal proteolytic activities in chickens.
    Moreau T; Recoules E; De Pauw M; Labas V; Réhault-Godbert S
    Poult Sci; 2024 Jan; 103(1):103182. PubMed ID: 37931399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between duodenase, a proteinase with dual specificity, and soybean inhibitors of Bowman-Birk and Kunitz type.
    Gladysheva IP; Zamolodchikova TS; Sokolova EA; Larionova NI
    Biochemistry (Mosc); 1999 Nov; 64(11):1244-9. PubMed ID: 10611528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteinase inhibition using small Bowman-Birk-type structures.
    Fernandez JH; Mello MO; Galgaro L; Tanaka AS; Silva-Filho MC; Neshich G
    Genet Mol Res; 2007 Oct; 6(4):846-58. PubMed ID: 18058707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiapoptotic activity of the Bowman-Birk inhibitor can be attributed to copurified phospholipids.
    Foehr MW; Tomei LD; Goddard JG; Pemberton PA; Bathurst IC
    Nutr Cancer; 1999; 34(2):199-205. PubMed ID: 10578488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide mimics of the Bowman-Birk inhibitor reactive site loop.
    McBride JD; Watson EM; Brauer AB; Jaulent AM; Leatherbarrow RJ
    Biopolymers; 2002; 66(2):79-92. PubMed ID: 12325158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.