BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 17725997)

  • 1. Differential regulation of fronto-executive function by the monoamines and acetylcholine.
    Robbins TW; Roberts AC
    Cereb Cortex; 2007 Sep; 17 Suppl 1():i151-60. PubMed ID: 17725997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific.
    Clarke HF; Walker SC; Dalley JW; Robbins TW; Roberts AC
    Cereb Cortex; 2007 Jan; 17(1):18-27. PubMed ID: 16481566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From arousal to cognition: the integrative position of the prefrontal cortex.
    Robbins TW
    Prog Brain Res; 2000; 126():469-83. PubMed ID: 11105663
    [No Abstract]   [Full Text] [Related]  

  • 4. Attentional set-shifting in rodents: a review of behavioural methods and pharmacological results.
    Tait DS; Chase EA; Brown VJ
    Curr Pharm Des; 2014; 20(31):5046-59. PubMed ID: 24345263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential optimal dopamine levels for set-shifting and working memory in Parkinson's disease.
    Fallon SJ; Smulders K; Esselink RA; van de Warrenburg BP; Bloem BR; Cools R
    Neuropsychologia; 2015 Oct; 77():42-51. PubMed ID: 26239947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning and cognitive flexibility: frontostriatal function and monoaminergic modulation.
    Kehagia AA; Murray GK; Robbins TW
    Curr Opin Neurobiol; 2010 Apr; 20(2):199-204. PubMed ID: 20167474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications.
    Robbins TW
    Philos Trans R Soc Lond B Biol Sci; 2007 May; 362(1481):917-32. PubMed ID: 17412678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine.
    Roberts AC; De Salvia MA; Wilkinson LS; Collins P; Muir JL; Everitt BJ; Robbins TW
    J Neurosci; 1994 May; 14(5 Pt 1):2531-44. PubMed ID: 8182426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical neuromodulation of frontal-executive functions in humans and other animals.
    Robbins TW
    Exp Brain Res; 2000 Jul; 133(1):130-8. PubMed ID: 10933217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are core component processes of executive function dissociable within the frontal lobes? Evidence from humans with focal prefrontal damage.
    Tsuchida A; Fellows LK
    Cortex; 2013; 49(7):1790-800. PubMed ID: 23206529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation.
    Robbins TW; Arnsten AF
    Annu Rev Neurosci; 2009; 32():267-87. PubMed ID: 19555290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefrontal serotonin depletion affects reversal learning but not attentional set shifting.
    Clarke HF; Walker SC; Crofts HS; Dalley JW; Robbins TW; Roberts AC
    J Neurosci; 2005 Jan; 25(2):532-8. PubMed ID: 15647499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemistry of the mind: neurochemical modulation of prefrontal cortical function.
    Robbins TW
    J Comp Neurol; 2005 Dec; 493(1):140-6. PubMed ID: 16254988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenic amines in the regulation of wakefulness and sleep.
    Hilakivi I
    Med Biol; 1987; 65(2-3):97-104. PubMed ID: 3309491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates.
    Dalley JW; Cardinal RN; Robbins TW
    Neurosci Biobehav Rev; 2004 Nov; 28(7):771-84. PubMed ID: 15555683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats.
    Laplante F; Zhang ZW; Huppé-Gourgues F; Dufresne MM; Vaucher E; Sullivan RM
    Neuropharmacology; 2012 Nov; 63(6):1075-84. PubMed ID: 22842071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Working memory and the suppression of reflexive saccades.
    Mitchell JP; Macrae CN; Gilchrist ID
    J Cogn Neurosci; 2002 Jan; 14(1):95-103. PubMed ID: 11798390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the ascending monoaminergic systems on the activity of the rat prefrontal cortex.
    Thierry AM; Godbout R; Mantz J; Glowinski J
    Prog Brain Res; 1990; 85():357-64; discussion 364-5. PubMed ID: 2094905
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of stress on behavioral flexibility in rodents.
    Hurtubise JL; Howland JG
    Neuroscience; 2017 Mar; 345():176-192. PubMed ID: 27066767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction.
    Arnsten AF
    CNS Drugs; 2009; 23 Suppl 1():33-41. PubMed ID: 19621976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.