These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17725998)

  • 1. Cannabinoid-mediated disinhibition and working memory: dynamical interplay of multiple feedback mechanisms in a continuous attractor model of prefrontal cortex.
    Carter E; Wang XJ
    Cereb Cortex; 2007 Sep; 17 Suppl 1():i16-26. PubMed ID: 17725998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "What" and "where" in visual working memory: a computational neurodynamical perspective for integrating FMRI and single-neuron data.
    Deco G; Rolls ET; Horwitz B
    J Cogn Neurosci; 2004 May; 16(4):683-701. PubMed ID: 15165356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Under the curve: critical issues for elucidating D1 receptor function in working memory.
    Williams GV; Castner SA
    Neuroscience; 2006 Apr; 139(1):263-76. PubMed ID: 16310964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FROST: a distributed neurocomputational model of working memory maintenance.
    Ashby FG; Ell SW; Valentin VV; Casale MB
    J Cogn Neurosci; 2005 Nov; 17(11):1728-43. PubMed ID: 16269109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurocomputational models of working memory.
    Durstewitz D; Seamans JK; Sejnowski TJ
    Nat Neurosci; 2000 Nov; 3 Suppl():1184-91. PubMed ID: 11127836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A working memory model based on fast Hebbian learning.
    Sandberg A; Tegnér J; Lansner A
    Network; 2003 Nov; 14(4):789-802. PubMed ID: 14653503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural circuit basis for spatial working memory.
    Constantinidis C; Wang XJ
    Neuroscientist; 2004 Dec; 10(6):553-65. PubMed ID: 15534040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathological effects of cortical architecture on working memory in schizophrenia.
    Gore CD; Bányai M; Gray PJ; Diwadkar V; Erdi P
    Pharmacopsychiatry; 2010 May; 43 Suppl 1():S92-7. PubMed ID: 20480449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamical stability of reverberatory neural circuits.
    Tegnér J; Compte A; Wang XJ
    Biol Cybern; 2002 Dec; 87(5-6):471-81. PubMed ID: 12461636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task.
    Macoveanu J; Klingberg T; Tegnér J
    Biol Cybern; 2007 Apr; 96(4):407-19. PubMed ID: 17260154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of short-term depression in sustained neural activity in the prefrontal cortex: a simulation study.
    Igarashi Y; Sakumura Y; Ishii S
    Neural Netw; 2006 Oct; 19(8):1137-52. PubMed ID: 16949792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia.
    O'Reilly RC; Frank MJ
    Neural Comput; 2006 Feb; 18(2):283-328. PubMed ID: 16378516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cannabinoids and prefrontal cortical function: insights from preclinical studies.
    Egerton A; Allison C; Brett RR; Pratt JA
    Neurosci Biobehav Rev; 2006; 30(5):680-95. PubMed ID: 16574226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability.
    Fall CP; Lewis TJ; Rinzel J
    Biol Cybern; 2005 Aug; 93(2):109-18. PubMed ID: 15806392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability in neuronal activity in primate cortex during working memory tasks.
    Shafi M; Zhou Y; Quintana J; Chow C; Fuster J; Bodner M
    Neuroscience; 2007 May; 146(3):1082-108. PubMed ID: 17418956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine increases the gain of the input-output response of rat prefrontal pyramidal neurons.
    Thurley K; Senn W; Lüscher HR
    J Neurophysiol; 2008 Jun; 99(6):2985-97. PubMed ID: 18400958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-in-first-out item replacement in a model of short-term memory based on persistent spiking.
    Koene RA; Hasselmo ME
    Cereb Cortex; 2007 Aug; 17(8):1766-81. PubMed ID: 17030561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D1 dopamine and NMDA receptors interactions in the medial prefrontal cortex: modulation of spatial working memory in rats.
    Rios Valentim SJ; Gontijo AV; Peres MD; Rodrigues LC; Nakamura-Palacios EM
    Behav Brain Res; 2009 Dec; 204(1):124-8. PubMed ID: 19482047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.