BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17726014)

  • 1. Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation.
    Wang Y; Rosen H; Madtes DK; Shao B; Martin TR; Heinecke JW; Fu X
    J Biol Chem; 2007 Nov; 282(44):31826-34. PubMed ID: 17726014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation.
    Fu X; Kassim SY; Parks WC; Heinecke JW
    J Biol Chem; 2003 Aug; 278(31):28403-9. PubMed ID: 12759346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase.
    Fu X; Kassim SY; Parks WC; Heinecke JW
    J Biol Chem; 2001 Nov; 276(44):41279-87. PubMed ID: 11533038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidative inactivation of tissue inhibitor of metalloproteinase-1 (TIMP-1) by hypochlorous acid (HOCI) is suppressed by anti-rheumatic drugs.
    Shabani F; McNeil J; Tippett L
    Free Radic Res; 1998 Feb; 28(2):115-23. PubMed ID: 9645388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methionine sulfoxide and proteolytic cleavage contribute to the inactivation of cathepsin G by hypochlorous acid: an oxidative mechanism for regulation of serine proteinases by myeloperoxidase.
    Shao B; Belaaouaj A; Verlinde CL; Fu X; Heinecke JW
    J Biol Chem; 2005 Aug; 280(32):29311-21. PubMed ID: 15967795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase activity: specific structural motifs control protein oxidation.
    Fu X; Kao JL; Bergt C; Kassim SY; Huq NP; d'Avignon A; Parks WC; Mecham RP; Heinecke JW
    J Biol Chem; 2004 Feb; 279(8):6209-12. PubMed ID: 14670964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: a potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase.
    Fu X; Mueller DM; Heinecke JW
    Biochemistry; 2002 Jan; 41(4):1293-301. PubMed ID: 11802729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition.
    Lee MH; Rapti M; Knaüper V; Murphy G
    J Biol Chem; 2004 Apr; 279(17):17562-9. PubMed ID: 14734567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorination and oxidation of the extracellular matrix protein laminin and basement membrane extracts by hypochlorous acid and myeloperoxidase.
    Nybo T; Dieterich S; Gamon LF; Chuang CY; Hammer A; Hoefler G; Malle E; Rogowska-Wrzesinska A; Davies MJ
    Redox Biol; 2019 Jan; 20():496-513. PubMed ID: 30476874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.
    Lin H; Levison BS; Buffa JA; Huang Y; Fu X; Wang Z; Gogonea V; DiDonato JA; Hazen SL
    Free Radic Biol Med; 2017 Mar; 104():20-31. PubMed ID: 28069522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation.
    Wang Y; Chen J; Ling M; López JA; Chung DW; Fu X
    J Biol Chem; 2015 Jan; 290(3):1422-31. PubMed ID: 25422322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imbalance between matrix metalloproteinases (MMP-9 and MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in acute respiratory distress syndrome patients.
    Lanchou J; Corbel M; Tanguy M; Germain N; Boichot E; Theret N; Clement B; Lagente V; Malledant Y
    Crit Care Med; 2003 Feb; 31(2):536-42. PubMed ID: 12576963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salivary MMPs, TIMPs, and MPO levels in periodontal disease patients and controls.
    Meschiari CA; Marcaccini AM; Santos Moura BC; Zuardi LR; Tanus-Santos JE; Gerlach RF
    Clin Chim Acta; 2013 Jun; 421():140-6. PubMed ID: 23501330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: potential markers for lipoproteins oxidatively damaged by phagocytes.
    Heinecke JW; Li W; Mueller DM; Bohrer A; Turk J
    Biochemistry; 1994 Aug; 33(33):10127-36. PubMed ID: 8060981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of simvastatin on MMPs and TIMPs in cigarette smoke-induced rat COPD model.
    Sun J; Bao J; Shi Y; Zhang B; Yuan L; Li J; Zhang L; Sun M; Zhang L; Sun W
    Int J Chron Obstruct Pulmon Dis; 2017; 12():717-724. PubMed ID: 28260878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equine TIMP-1 and TIMP-2: identification, activity and cellular sources.
    Clegg PD; Coughlan AR; Carter SD
    Equine Vet J; 1998 Sep; 30(5):416-23. PubMed ID: 9758100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of selective TIMPs.
    Nagase H; Meng Q; Malinovskii V; Huang W; Chung L; Bode W; Maskos K; Brew K
    Ann N Y Acad Sci; 1999 Jun; 878():1-11. PubMed ID: 10415716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties.
    van Zyl JM; Basson K; Kriegler A; van der Walt BJ
    Biochem Pharmacol; 1991 Jul; 42(3):599-608. PubMed ID: 1650217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation.
    Anderson MM; Hazen SL; Hsu FF; Heinecke JW
    J Clin Invest; 1997 Feb; 99(3):424-32. PubMed ID: 9022075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residue 2 of TIMP-1 is a major determinant of affinity and specificity for matrix metalloproteinases but effects of substitutions do not correlate with those of the corresponding P1' residue of substrate.
    Meng Q; Malinovskii V; Huang W; Hu Y; Chung L; Nagase H; Bode W; Maskos K; Brew K
    J Biol Chem; 1999 Apr; 274(15):10184-9. PubMed ID: 10187802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.