BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17726018)

  • 21. Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion.
    Jun Y; Fratti RA; Wickner W
    J Biol Chem; 2004 Dec; 279(51):53186-95. PubMed ID: 15485855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of bimolecular fluorescence complementation to study in vivo interactions between Cdc42p and Rdi1p of Saccharomyces cerevisiae.
    Cole KC; McLaughlin HW; Johnson DI
    Eukaryot Cell; 2007 Mar; 6(3):378-87. PubMed ID: 17220465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Cdc42p GTPase is targeted to the site of cell division in the fission yeast Schizosaccharomyces pombe.
    Merla A; Johnson DI
    Eur J Cell Biol; 2000 Jul; 79(7):469-77. PubMed ID: 10961446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different domains of the essential GTPase Cdc42p required for growth and development of Saccharomyces cerevisiae.
    Mösch HU; Köhler T; Braus GH
    Mol Cell Biol; 2001 Jan; 21(1):235-48. PubMed ID: 11113198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kel1p Mediates Yeast Cell Fusion Through a Fus2p- and Cdc42p-Dependent Mechanism.
    Smith JA; Rose MD
    Genetics; 2016 Apr; 202(4):1421-35. PubMed ID: 26865368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating.
    Nelson B; Parsons AB; Evangelista M; Schaefer K; Kennedy K; Ritchie S; Petryshen TL; Boone C
    Genetics; 2004 Jan; 166(1):67-77. PubMed ID: 15020407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae.
    Starai VJ; Thorngren N; Fratti RA; Wickner W
    J Biol Chem; 2005 Apr; 280(17):16754-62. PubMed ID: 15737991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The yeast vacuolar ABC transporter Ybt1p regulates membrane fusion through Ca2+ transport modulation.
    Sasser TL; Padolina M; Fratti RA
    Biochem J; 2012 Dec; 448(3):365-72. PubMed ID: 22970809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional analysis of RhoGDI inhibitory activity on vacuole membrane fusion.
    Logan MR; Jones L; Forsberg D; Bodman A; Baier A; Eitzen G
    Biochem J; 2011 Mar; 434(3):445-57. PubMed ID: 21171963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion.
    Thorngren N; Collins KM; Fratti RA; Wickner W; Merz AJ
    EMBO J; 2004 Jul; 23(14):2765-76. PubMed ID: 15241469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p.
    Fratti RA; Wickner W
    J Biol Chem; 2007 Apr; 282(17):13133-8. PubMed ID: 17347148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage.
    Wang CW; Stromhaug PE; Kauffman EJ; Weisman LS; Klionsky DJ
    J Cell Biol; 2003 Dec; 163(5):973-85. PubMed ID: 14662743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion.
    Wang L; Merz AJ; Collins KM; Wickner W
    J Cell Biol; 2003 Feb; 160(3):365-74. PubMed ID: 12566429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole.
    Kweon Y; Rothe A; Conibear E; Stevens TH
    Mol Biol Cell; 2003 May; 14(5):1868-81. PubMed ID: 12802061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional reconstitution of ypt7p GTPase and a purified vacuole SNARE complex.
    Sato K; Wickner W
    Science; 1998 Jul; 281(5377):700-2. PubMed ID: 9685264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion.
    Kato M; Wickner W
    EMBO J; 2001 Aug; 20(15):4035-40. PubMed ID: 11483507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATP-independent control of Vac8 palmitoylation by a SNARE subcomplex on yeast vacuoles.
    Dietrich LE; LaGrassa TJ; Rohde J; Cristodero M; Meiringer CT; Ungermann C
    J Biol Chem; 2005 Apr; 280(15):15348-55. PubMed ID: 15701652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae.
    Ozaki-Kuroda K; Yamamoto Y; Nohara H; Kinoshita M; Fujiwara T; Irie K; Takai Y
    Mol Cell Biol; 2001 Feb; 21(3):827-39. PubMed ID: 11154270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement.
    Zick M; Wickner W
    Mol Biol Cell; 2016 Aug; 27(16):2590-7. PubMed ID: 27385334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1.
    Michaillat L; Baars TL; Mayer A
    Mol Biol Cell; 2012 Mar; 23(5):881-95. PubMed ID: 22238359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.