These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17726022)

  • 21. High-affinity Ni2+ binding selectively promotes binding of Helicobacter pylori NikR to its target urease promoter.
    Zambelli B; Danielli A; Romagnoli S; Neyroz P; Ciurli S; Scarlato V
    J Mol Biol; 2008 Nov; 383(5):1129-43. PubMed ID: 18790698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SmtB-DNA and protein-protein interactions in the formation of the cyanobacterial metallothionein repression complex: Zn2+ does not dissociate the protein-DNA complex in vitro.
    Kar SR; Lebowitz J; Blume S; Taylor KB; Hall LM
    Biochemistry; 2001 Nov; 40(44):13378-89. PubMed ID: 11683648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors.
    Osman D; Cavet JS
    Nat Prod Rep; 2010 May; 27(5):668-80. PubMed ID: 20442958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex.
    Morby AP; Turner JS; Huckle JW; Robinson NJ
    Nucleic Acids Res; 1993 Feb; 21(4):921-5. PubMed ID: 8451191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural characterization of distinct alpha3N and alpha5 metal sites in the cyanobacterial zinc sensor SmtB.
    VanZile ML; Chen X; Giedroc DP
    Biochemistry; 2002 Aug; 41(31):9765-75. PubMed ID: 12146942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family.
    Roy R; Samanta S; Patra S; Mahato NK; Saha RP
    Metallomics; 2018 Oct; 10(10):1476-1500. PubMed ID: 30191942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Escherichia coli metallo-regulator RcnR represses rcnA and rcnR transcription through binding on a shared operator site: Insights into regulatory specificity towards nickel and cobalt.
    Blaha D; Arous S; Blériot C; Dorel C; Mandrand-Berthelot MA; Rodrigue A
    Biochimie; 2011 Mar; 93(3):434-9. PubMed ID: 21040754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis.
    VanZile ML; Chen X; Giedroc DP
    Biochemistry; 2002 Aug; 41(31):9776-86. PubMed ID: 12146943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators.
    Pennella MA; Giedroc DP
    Biometals; 2005 Aug; 18(4):413-28. PubMed ID: 16158234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Cu(I)-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile.
    Liu T; Chen X; Ma Z; Shokes J; Hemmingsen L; Scott RA; Giedroc DP
    Biochemistry; 2008 Oct; 47(40):10564-75. PubMed ID: 18795800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ni(II) and Co(II) sensing by Escherichia coli RcnR.
    Iwig JS; Leitch S; Herbst RW; Maroney MJ; Chivers PT
    J Am Chem Soc; 2008 Jun; 130(24):7592-606. PubMed ID: 18505253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment.
    Saha RP; Samanta S; Patra S; Sarkar D; Saha A; Singh MK
    Biometals; 2017 Aug; 30(4):459-503. PubMed ID: 28512703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SirR, a novel iron-dependent repressor in Staphylococcus epidermidis.
    Hill PJ; Cockayne A; Landers P; Morrissey JA; Sims CM; Williams P
    Infect Immun; 1998 Sep; 66(9):4123-9. PubMed ID: 9712757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Insights into a Novel Cu(I)-Sensitive ArsR/SmtB Family Repressor in Extremophile Acidithiobacillus caldus.
    Qiu Y; Tong Y; Yang H; Feng S
    Appl Environ Microbiol; 2023 Jan; 89(1):e0126622. PubMed ID: 36602357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis.
    Ma Z; Cowart DM; Scott RA; Giedroc DP
    Biochemistry; 2009 Apr; 48(15):3325-34. PubMed ID: 19249860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetics of zinc-mediated interactions in the allosteric pathways of metal sensor proteins.
    Chakravorty DK; Parker TM; Guerra AJ; Sherrill CD; Giedroc DP; Merz KM
    J Am Chem Soc; 2013 Jan; 135(1):30-3. PubMed ID: 23214972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal sensing in Salmonella: implications for pathogenesis.
    Osman D; Cavet JS
    Adv Microb Physiol; 2011; 58():175-232. PubMed ID: 21722794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The zinc metalloregulatory protein Synechococcus PCC7942 SmtB binds a single zinc ion per monomer with high affinity in a tetrahedral coordination geometry.
    VanZile ML; Cosper NJ; Scott RA; Giedroc DP
    Biochemistry; 2000 Sep; 39(38):11818-29. PubMed ID: 10995250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metalloregulation of the cyanobacterial smt locus: identification of SmtB binding sites and direct interaction with metals.
    Erbe JL; Taylor KB; Hall LM
    Nucleic Acids Res; 1995 Jul; 23(13):2472-8. PubMed ID: 7630724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of SmtB/ArsR cis elements and proteins in archaea using the Prokaryotic InterGenic Exploration Database (PIGED).
    Bose M; Slick D; Sarto MJ; Murphy P; Roberts D; Roberts J; Barber RD
    Archaea; 2006 Aug; 2(1):39-49. PubMed ID: 16877320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.