These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 17726102)

  • 1. Automated de novo prediction of native-like RNA tertiary structures.
    Das R; Baker D
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14664-9. PubMed ID: 17726102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for low resolution prediction of small protein tertiary structure.
    Ortiz AR; Hu WP; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1997; ():316-27. PubMed ID: 9390302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational analysis of single-base bulges in A-form DNA and RNA using a hierarchical approach and energetic evaluation with a continuum solvent model.
    Zacharias M; Sklenar H
    J Mol Biol; 1999 Jun; 289(2):261-75. PubMed ID: 10366504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting a set of minimal free energy RNA secondary structures common to two sequences.
    Mathews DH
    Bioinformatics; 2005 May; 21(10):2246-53. PubMed ID: 15731207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing physical energy functions for protein folding.
    Fujitsuka Y; Takada S; Luthey-Schulten ZA; Wolynes PG
    Proteins; 2004 Jan; 54(1):88-103. PubMed ID: 14705026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CONTRAfold: RNA secondary structure prediction without physics-based models.
    Do CB; Woods DA; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e90-8. PubMed ID: 16873527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA secondary structure prediction using a self-consistent mean field approach.
    Kleesiek J; Torda AE
    J Comput Chem; 2010 Apr; 31(6):1135-42. PubMed ID: 19899145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of RNA multiloop and pseudoknot conformations from a lattice-based, coarse-grain tertiary structure model.
    Jost D; Everaers R
    J Chem Phys; 2010 Mar; 132(9):095101. PubMed ID: 20210413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of P-RnaPredict and mfold--algorithms for RNA secondary structure prediction.
    Wiese KC; Hendriks A
    Bioinformatics; 2006 Apr; 22(8):934-42. PubMed ID: 16473869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress and challenges in high-resolution refinement of protein structure models.
    Misura KM; Baker D
    Proteins; 2005 Apr; 59(1):15-29. PubMed ID: 15690346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of RNA secondary structure by free energy minimization.
    Mathews DH; Turner DH
    Curr Opin Struct Biol; 2006 Jun; 16(3):270-8. PubMed ID: 16713706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA 3D structure prediction by using a coarse-grained model and experimental data.
    Xia Z; Bell DR; Shi Y; Ren P
    J Phys Chem B; 2013 Mar; 117(11):3135-44. PubMed ID: 23438338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved prediction of RNA tertiary structure with insights into native state dynamics.
    Bida JP; Maher LJ
    RNA; 2012 Mar; 18(3):385-93. PubMed ID: 22279150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation.
    Gautheret D; Gutell RR
    Nucleic Acids Res; 1997 Apr; 25(8):1559-64. PubMed ID: 9092662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blind tests of RNA nearest-neighbor energy prediction.
    Chou FC; Kladwang W; Kappel K; Das R
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8430-5. PubMed ID: 27402765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tertiary structure prediction of RNA-RNA complexes using a secondary structure and fragment-based method.
    Yamasaki S; Hirokawa T; Asai K; Fukui K
    J Chem Inf Model; 2014 Feb; 54(2):672-82. PubMed ID: 24479711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting stacking interaction parameters for RNA from the data set of native structures.
    Dima RI; Hyeon C; Thirumalai D
    J Mol Biol; 2005 Mar; 347(1):53-69. PubMed ID: 15733917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules.
    Leontis NB; Stombaugh J; Westhof E
    Biochimie; 2002 Sep; 84(9):961-73. PubMed ID: 12458088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models.
    Krokhotin A; Dokholyan NV
    Methods Enzymol; 2015; 553():65-89. PubMed ID: 25726461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.