These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17726166)

  • 1. A model of segmental duplication formation in Drosophila melanogaster.
    Fiston-Lavier AS; Anxolabehere D; Quesneville H
    Genome Res; 2007 Oct; 17(10):1458-70. PubMed ID: 17726166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila bloom helicase maintains genome integrity by inhibiting recombination between divergent DNA sequences.
    Kappeler M; Kranz E; Woolcock K; Georgiev O; Schaffner W
    Nucleic Acids Res; 2008 Dec; 36(21):6907-17. PubMed ID: 18978019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annealing of Complementary DNA Sequences During Double-Strand Break Repair in
    Holsclaw JK; Sekelsky J
    Genetics; 2017 May; 206(1):467-480. PubMed ID: 28258182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains.
    Slawson EE; Shaffer CD; Malone CD; Leung W; Kellmann E; Shevchek RB; Craig CA; Bloom SM; Bogenpohl J; Dee J; Morimoto ET; Myoung J; Nett AS; Ozsolak F; Tittiger ME; Zeug A; Pardue ML; Buhler J; Mardis ER; Elgin SC
    Genome Biol; 2006; 7(2):R15. PubMed ID: 16507169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient gap repair in Drosophila melanogaster requires a maximum of 31 nucleotides of homologous sequence at the searching ends.
    Keeler KJ; Gloor GB
    Mol Cell Biol; 1997 Feb; 17(2):627-34. PubMed ID: 9001216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient repair of DNA breaks in Drosophila: evidence for single-strand annealing and competition with other repair pathways.
    Preston CR; Engels W; Flores C
    Genetics; 2002 Jun; 161(2):711-20. PubMed ID: 12072467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks.
    Khodaverdian VY; Hanscom T; Yu AM; Yu TL; Mak V; Brown AJ; Roberts SA; McVey M
    Nucleic Acids Res; 2017 Dec; 45(22):12848-12861. PubMed ID: 29121353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair-mediated duplication by capture of proximal chromosomal DNA has shaped vertebrate genome evolution.
    Pace JK; Sen SK; Batzer MA; Feschotte C
    PLoS Genet; 2009 May; 5(5):e1000469. PubMed ID: 19424419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four.
    Sun FL; Haynes K; Simpson CL; Lee SD; Collins L; Wuller J; Eissenberg JC; Elgin SC
    Mol Cell Biol; 2004 Sep; 24(18):8210-20. PubMed ID: 15340080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair.
    Nassif N; Penney J; Pal S; Engels WR; Gloor GB
    Mol Cell Biol; 1994 Mar; 14(3):1613-25. PubMed ID: 8114699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes.
    Kuhn GC; Küttler H; Moreira-Filho O; Heslop-Harrison JS
    Mol Biol Evol; 2012 Jan; 29(1):7-11. PubMed ID: 21712468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hoppel-family of mobile elements of Drosophila melanogaster, flanked by short inverted repeats and having preferential localization in the heterochromatin regions of the genome].
    Kurenova EV; Leĭbovich BA; Bass IA; Bebikhov DV; Pavlova MN; Danilevskaia ON
    Genetika; 1990 Oct; 26(10):1701-12. PubMed ID: 2178142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential repair of excision gaps generated by transposable elements of the 'Ac family'.
    Rommens CM; van Haaren MJ; Nijkamp HJ; Hille J
    Bioessays; 1993 Aug; 15(8):507-12. PubMed ID: 8135764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair.
    Zapotoczny G; Sekelsky J
    G3 (Bethesda); 2017 Apr; 7(4):1191-1199. PubMed ID: 28179392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeat mediated gene duplication in the Drosophila pseudoobscura genome.
    Meisel RP
    Gene; 2009 Jun; 438(1-2):1-7. PubMed ID: 19272434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 5.9-kb tandem repeat at the euchromatin-heterochromatin boundary of the X chromosome of Drosophila melanogaster.
    O'Hare K; Chadwick BP; Constantinou A; Davis AJ; Mitchelson A; Tudor M
    Mol Genet Genomics; 2002 Jul; 267(5):647-55. PubMed ID: 12172804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in
    Thomas A; Cox J; Wolfe KB; Mingalone CH; Yaspan HR; McVey M
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient method to generate chromosomal rearrangements by targeted DNA double-strand breaks in Drosophila melanogaster.
    Egli D; Hafen E; Schaffner W
    Genome Res; 2004 Jul; 14(7):1382-93. PubMed ID: 15197166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing stimulates siRNA formation at Drosophila DNA double-strand breaks.
    Merk K; Breinig M; Böttcher R; Krebs S; Blum H; Boutros M; Förstemann K
    PLoS Genet; 2017 Jun; 13(6):e1006861. PubMed ID: 28628606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterochromatin-Enriched Assemblies Reveal the Sequence and Organization of the
    Chang CH; Larracuente AM
    Genetics; 2019 Jan; 211(1):333-348. PubMed ID: 30420487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.