These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17726575)

  • 1. The opsins of the vertebrate retina: insights from structural, biochemical, and evolutionary studies.
    Nickle B; Robinson PR
    Cell Mol Life Sci; 2007 Nov; 64(22):2917-32. PubMed ID: 17726575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish.
    Philp AR; Bellingham J; Garcia-Fernandez J; Foster RG
    FEBS Lett; 2000 Feb; 468(2-3):181-8. PubMed ID: 10692583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis.
    Carleton KL; Spady TC; Cote RH
    J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The opsins.
    Terakita A
    Genome Biol; 2005; 6(3):213. PubMed ID: 15774036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shedding light on serpent sight: the visual pigments of henophidian snakes.
    Davies WL; Cowing JA; Bowmaker JK; Carvalho LS; Gower DJ; Hunt DM
    J Neurosci; 2009 Jun; 29(23):7519-25. PubMed ID: 19515920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VA opsin, melanopsin, and an inherent light response within retinal interneurons.
    Jenkins A; Muñoz M; Tarttelin EE; Bellingham J; Foster RG; Hankins MW
    Curr Biol; 2003 Aug; 13(15):1269-78. PubMed ID: 12906786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone visual pigments.
    Imamoto Y; Shichida Y
    Biochim Biophys Acta; 2014 May; 1837(5):664-73. PubMed ID: 24021171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations.
    Patel JS; Brown CJ; Ytreberg FM; Stenkamp DL
    PLoS Comput Biol; 2018 Jan; 14(1):e1005974. PubMed ID: 29364888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer.
    Teller DC; Stenkamp RE; Palczewski K
    FEBS Lett; 2003 Nov; 555(1):151-9. PubMed ID: 14630336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rod and green cone opsins of two avian species, the budgerigar, Melopsittacus undulatus, and the mallard duck, Anas platyrhynchus.
    Heath LA; Wilkie SE; Bowmaker JK; Hunt DM
    Gene; 1997 Dec; 204(1-2):121-6. PubMed ID: 9434173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning of the salamander red and blue cone visual pigments.
    Xu L; Hazard ES; Lockman DK; Crouch RK; Ma J
    Mol Vis; 1998 Jul; 4():10. PubMed ID: 9675215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photopigments and circadian systems of vertebrates.
    Argamaso SM; Froehlich AC; McCall MA; Nevo E; Provencio I; Foster RG
    Biophys Chem; 1995; 56(1-2):3-11. PubMed ID: 7662867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel and ancient vertebrate opsin.
    Soni BG; Foster RG
    FEBS Lett; 1997 Apr; 406(3):279-83. PubMed ID: 9136902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates.
    Bellingham J; Chaurasia SS; Melyan Z; Liu C; Cameron MA; Tarttelin EE; Iuvone PM; Hankins MW; Tosini G; Lucas RJ
    PLoS Biol; 2006 Jul; 4(8):e254. PubMed ID: 16856781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertebrate ancient opsin and melanopsin: divergent irradiance detectors.
    Davies WL; Hankins MW; Foster RG
    Photochem Photobiol Sci; 2010 Nov; 9(11):1444-57. PubMed ID: 20922256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position.
    Bellingham J; Whitmore D; Philp AR; Wells DJ; Foster RG
    Brain Res Mol Brain Res; 2002 Nov; 107(2):128-36. PubMed ID: 12487121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.
    de Busserolles F; Cortesi F; Helvik JV; Davies WIL; Templin RM; Sullivan RKP; Michell CT; Mountford JK; Collin SP; Irigoien X; Kaartvedt S; Marshall J
    Sci Adv; 2017 Nov; 3(11):eaao4709. PubMed ID: 29134201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreceptor differentiation during retinal development, growth, and regeneration in a metamorphic vertebrate.
    Mader MM; Cameron DA
    J Neurosci; 2004 Dec; 24(50):11463-72. PubMed ID: 15601953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico characterisation and chromosomal localisation of human RRH (peropsin)--implications for opsin evolution.
    Bellingham J; Wells DJ; Foster RG
    BMC Genomics; 2003 Jan; 4(1):3. PubMed ID: 12542842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal.
    Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
    Biochemistry; 2002 May; 41(19):6019-25. PubMed ID: 11993996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.