These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17726681)

  • 1. Circadian proteomics of the mouse retina.
    Tsuji T; Hirota T; Takemori N; Komori N; Yoshitane H; Fukuda M; Matsumoto H; Fukada Y
    Proteomics; 2007 Oct; 7(19):3500-8. PubMed ID: 17726681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma.
    Tezel G; Yang X; Cai J
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3177-87. PubMed ID: 16123417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina.
    Hayasaka T; Goto-Inoue N; Sugiura Y; Zaima N; Nakanishi H; Ohishi K; Nakanishi S; Naito T; Taguchi R; Setou M
    Rapid Commun Mass Spectrom; 2008 Nov; 22(21):3415-26. PubMed ID: 18837478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clock gene expression in the retina of melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice.
    Dinet V; Ansari N; Torres-Farfan C; Korf HW
    J Pineal Res; 2007 Jan; 42(1):83-91. PubMed ID: 17198542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chick retinal proteome database and differential retinal protein expressions during early ocular development.
    Lam TC; Li KK; Lo SC; Guggenheim JA; To CH
    J Proteome Res; 2006 Apr; 5(4):771-84. PubMed ID: 16602683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver.
    Cretenet G; Le Clech M; Gachon F
    Cell Metab; 2010 Jan; 11(1):47-57. PubMed ID: 20074527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological importance of a circadian clock outside the suprachiasmatic nucleus.
    Storch KF; Paz C; Signorovitch J; Raviola E; Pawlyk B; Li T; Weitz CJ
    Cold Spring Harb Symp Quant Biol; 2007; 72():307-18. PubMed ID: 18419288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of osteoblasts exposed to fluoride in vitro.
    Xu H; Jing L; Li GS
    Biol Trace Elem Res; 2008; 123(1-3):91-7. PubMed ID: 18197394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic trajectory mapping of biological transformation: Application to developmental mouse retina.
    Haniu H; Komori N; Takemori N; Singh A; Ash JD; Matsumoto H
    Proteomics; 2006 Jun; 6(11):3251-61. PubMed ID: 16673440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of the mouse brain following protein enrichment by preparative electrophoresis.
    Xixi E; Dimitraki P; Vougas K; Kossida S; Lubec G; Fountoulakis M
    Electrophoresis; 2006 Apr; 27(7):1424-31. PubMed ID: 16518779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of {beta}-TrCP1 and {beta}-TrCP2 in circadian rhythm generation by mediating degradation of clock protein PER2.
    Ohsaki K; Oishi K; Kozono Y; Nakayama K; Nakayama KI; Ishida N
    J Biochem; 2008 Nov; 144(5):609-18. PubMed ID: 18782782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteome analysis of cisplatin-induced apoptotic Jurkat T cells by stable isotope labeling with amino acids in cell culture, SDS-PAGE, and LC-MALDI-TOF/TOF MS.
    Schmidt F; Hustoft HK; Strozynski M; Dimmler C; Rudel T; Thiede B
    Electrophoresis; 2007 Dec; 28(23):4359-68. PubMed ID: 17987630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of leucomyosuppressin in the brain and circadian clock of the cockroach Leucophaea maderae.
    Söhler S; Neupert S; Predel R; Nichols R; Stengl M
    Cell Tissue Res; 2007 May; 328(2):443-52. PubMed ID: 17216199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symphony of rhythms in the Xenopus laevis retina.
    Anderson FE; Green CB
    Microsc Res Tech; 2000 Sep; 50(5):360-72. PubMed ID: 10941172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time keeping by the quail's eye: circadian regulation of melatonin production.
    Steele CT; Tosini G; Siopes T; Underwood H
    Gen Comp Endocrinol; 2006 Feb; 145(3):232-6. PubMed ID: 16277985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythms in the eye: the physiological significance of melatonin receptors in ocular tissues.
    Wiechmann AF; Summers JA
    Prog Retin Eye Res; 2008 Mar; 27(2):137-60. PubMed ID: 18316227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients.
    Kim T; Kim SJ; Kim K; Kang UB; Lee C; Park KS; Yu HG; Kim Y
    Proteomics; 2007 Nov; 7(22):4203-15. PubMed ID: 17955474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing circadian rhythms in Chlamydomonas rheinhardtii by functional proteomics.
    Wagner V; Mittag M
    Methods Mol Biol; 2009; 479():173-88. PubMed ID: 19083188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian rhythms in the retina of rats with photoreceptor degeneration.
    Sakamoto K; Liu C; Tosini G
    J Neurochem; 2004 Aug; 90(4):1019-24. PubMed ID: 15287909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.