These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 17727246)
1. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Jin H; Kang KA Adv Exp Med Biol; 2007; 599():45-52. PubMed ID: 17727246 [TBL] [Abstract][Full Text] [Related]
2. Tumor-specific nano-entities for optical detection and hyperthermic treatment of breast cancer. Jin H; Hong B; Kakar SS; Kang KA Adv Exp Med Biol; 2008; 614():275-84. PubMed ID: 18290338 [TBL] [Abstract][Full Text] [Related]
3. [A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field]. Liu X; Xu B; Xia QS; Zhao TD; Tang JT Ai Zheng; 2005 Sep; 24(9):1148-50. PubMed ID: 16159444 [TBL] [Abstract][Full Text] [Related]
4. Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer. Wang S; Dai Z; Ke H; Qu E; Qi X; Zhang K; Wang J Eur J Radiol; 2014 Jan; 83(1):117-22. PubMed ID: 24268740 [TBL] [Abstract][Full Text] [Related]
6. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
7. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Kossatz S; Grandke J; Couleaud P; Latorre A; Aires A; Crosbie-Staunton K; Ludwig R; Dähring H; Ettelt V; Lazaro-Carrillo A; Calero M; Sader M; Courty J; Volkov Y; Prina-Mello A; Villanueva A; Somoza Á; Cortajarena AL; Miranda R; Hilger I Breast Cancer Res; 2015 May; 17(1):66. PubMed ID: 25968050 [TBL] [Abstract][Full Text] [Related]
8. Effect of AEM energy applicator configuration on magnetic nanoparticle mediated hyperthermia for breast cancer. Sanapala KK; Hewaparakrama K; Kang KA Adv Exp Med Biol; 2011; 701():143-8. PubMed ID: 21445781 [TBL] [Abstract][Full Text] [Related]
9. Induced heat property of polyethyleneglycol-coated iron oxide nanoparticles with dispersion stability for hyperthermia. Jang DH; Lee YI; Kim KS; Park ES; Kang SC; Yoon TJ; Choa YH J Nanosci Nanotechnol; 2013 Sep; 13(9):6098-102. PubMed ID: 24205608 [TBL] [Abstract][Full Text] [Related]
10. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia. Attar MM; Haghpanahi M Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154 [TBL] [Abstract][Full Text] [Related]
11. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method. Reynoso FJ; Lee CD; Cheong SK; Cho SH Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455 [TBL] [Abstract][Full Text] [Related]
12. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia. Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366 [TBL] [Abstract][Full Text] [Related]
14. Gold nanostructures as mediators of hyperthermia therapies in breast cancer. Granja A; Pinheiro M; Sousa CT; Reis S Biochem Pharmacol; 2021 Aug; 190():114639. PubMed ID: 34077740 [TBL] [Abstract][Full Text] [Related]
16. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Hilger I; Hiergeist R; Hergt R; Winnefeld K; Schubert H; Kaiser WA Invest Radiol; 2002 Oct; 37(10):580-6. PubMed ID: 12352168 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Rengan AK; Jagtap M; De A; Banerjee R; Srivastava R Nanoscale; 2014 Jan; 6(2):916-23. PubMed ID: 24281647 [TBL] [Abstract][Full Text] [Related]
18. A radio-frequency coupling network for heating of citrate-coated gold nanoparticles for cancer therapy: design and analysis. Kruse DE; Stephens DN; Lindfors HA; Ingham ES; Paoli EE; Ferrara KW IEEE Trans Biomed Eng; 2011 Jul; 58(7):2002-12. PubMed ID: 21402506 [TBL] [Abstract][Full Text] [Related]
19. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Lee J; Chatterjee DK; Lee MH; Krishnan S Cancer Lett; 2014 May; 347(1):46-53. PubMed ID: 24556077 [TBL] [Abstract][Full Text] [Related]
20. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Purushotham S; Chang PE; Rumpel H; Kee IH; Ng RT; Chow PK; Tan CK; Ramanujan RV Nanotechnology; 2009 Jul; 20(30):305101. PubMed ID: 19581698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]