These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 17727270)

  • 21. Fluidics-resolved estimation of protein adsorption kinetics in a biomicrofluidic system.
    Jenkins J; Prabhakarpandian B; Lenghaus K; Hickman J; Sundaram S
    Anal Biochem; 2004 Aug; 331(2):207-15. PubMed ID: 15265724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method.
    Mautner T
    Biosens Bioelectron; 2004 Jun; 19(11):1409-19. PubMed ID: 15093212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials.
    Lin JL; Lee KH; Lee GB
    Electrophoresis; 2005 Dec; 26(24):4605-15. PubMed ID: 16358251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.
    Chen JZ; Darhuber AA; Troian SM; Wagner S
    Lab Chip; 2004 Oct; 4(5):473-80. PubMed ID: 15472731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic pool structure for cell docking and rapid mixing.
    Yang J; Yang J; Yin ZQ; Svir I; Xu J; Luo HY; Wang M; Cao Y; Hu N; Liao YJ; Zheng XL
    Anal Chim Acta; 2009 Feb; 634(1):61-7. PubMed ID: 19154811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.
    Brett DJ; Kucernak AR; Aguiar P; Atkins SC; Brandon NP; Clague R; Cohen LF; Hinds G; Kalyvas C; Offer GJ; Ladewig B; Maher R; Marquis A; Shearing P; Vasileiadis N; Vesovic V
    Chemphyschem; 2010 Sep; 11(13):2714-31. PubMed ID: 20730848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes.
    Lee ES; Robinson D; Rognlien JL; Harnett CK; Simmons BA; Bowe Ellis CR; Davalos RV
    Bioelectrochemistry; 2006 Sep; 69(1):117-25. PubMed ID: 16483852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of well and groove microchannel bioreactors for cell culture.
    Korin N; Bransky A; Khoury M; Dinnar U; Levenberg S
    Biotechnol Bioeng; 2009 Mar; 102(4):1222-30. PubMed ID: 18973280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing.
    Wang F; Wang H; Wang J; Wang HY; Rummel PL; Garimella SV; Lu C
    Biotechnol Bioeng; 2008 May; 100(1):150-8. PubMed ID: 18078299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high current density DC magnetohydrodynamic (MHD) micropump.
    Homsy A; Koster S; Eijkel JC; van den Berg A; Lucklum F; Verpoorte E; de Rooij NF
    Lab Chip; 2005 Apr; 5(4):466-71. PubMed ID: 15791346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic device for the discrimination of single-nucleotide polymorphisms in DNA oligomers using electrochemically actuated alkaline dehybridization.
    Zhang H; Mitrovski SM; Nuzzo RG
    Anal Chem; 2007 Dec; 79(23):9014-21. PubMed ID: 17973402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Air-breathing laminar flow-based microfluidic fuel cell.
    Jayashree RS; Gancs L; Choban ER; Primak A; Natarajan D; Markoski LJ; Kenis PJ
    J Am Chem Soc; 2005 Dec; 127(48):16758-9. PubMed ID: 16316201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics.
    Malic L; Veres T; Tabrizian M
    Lab Chip; 2009 Feb; 9(3):473-5. PubMed ID: 19156299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An effervescent reaction micropump for portable microfluidic systems.
    Good BT; Bowman CN; Davis RH
    Lab Chip; 2006 May; 6(5):659-66. PubMed ID: 16652182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toolbox for the design of optimized microfluidic components.
    Mott DR; Howell PB; Golden JP; Kaplan CR; Ligler FS; Oran ES
    Lab Chip; 2006 Apr; 6(4):540-9. PubMed ID: 16572217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays.
    Yuen PK; Li G; Bao Y; Muller UR
    Lab Chip; 2003 Feb; 3(1):46-50. PubMed ID: 15100805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel microfluidic driver via AC electrokinetics.
    Kuo CT; Liu CH
    Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and characterization of microfluidic probes for convection enhanced drug delivery.
    Neeves KB; Lo CT; Foley CP; Saltzman WM; Olbricht WL
    J Control Release; 2006 Apr; 111(3):252-62. PubMed ID: 16476500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.