BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 17727412)

  • 1. The contribution of mosses to the carbon and water exchange of Arctic ecosystems: quantification and relationships with system properties.
    Douma JC; VAN Wijk MT; Lang SI; Shaver GR
    Plant Cell Environ; 2007 Oct; 30(10):1205-15. PubMed ID: 17727412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis.
    Duursma RA; Kolari P; Perämäki M; Pulkkinen M; Mäkelä A; Nikinmaa E; Hari P; Aurela M; Berbigier P; Bernhofer CH; Grünwald T; Loustau D; Mölder M; Verbeeck H; Vesala T
    Tree Physiol; 2009 May; 29(5):621-39. PubMed ID: 19324698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.
    Yuan W; Liu S; Dong W; Liang S; Zhao S; Chen J; Xu W; Li X; Barr A; Andrew Black T; Yan W; Goulden ML; Kulmala L; Lindroth A; Margolis HA; Matsuura Y; Moors E; van der Molen M; Ohta T; Pilegaard K; Varlagin A; Vesala T
    Nat Commun; 2014 Jun; 5():4270. PubMed ID: 24967601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of mosses in carbon uptake and partitioning in arctic vegetation.
    Street LE; Subke JA; Sommerkorn M; Sloan V; Ducrotoy H; Phoenix GK; Williams M
    New Phytol; 2013 Jul; 199(1):163-175. PubMed ID: 23614757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct uptake of soil nitrogen by mosses.
    Ayres E; van der Wal R; Sommerkorn M; Bardgett RD
    Biol Lett; 2006 Jun; 2(2):286-8. PubMed ID: 17148384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Net carbon dioxide losses of northern ecosystems in response to autumn warming.
    Piao S; Ciais P; Friedlingstein P; Peylin P; Reichstein M; Luyssaert S; Margolis H; Fang J; Barr A; Chen A; Grelle A; Hollinger DY; Laurila T; Lindroth A; Richardson AD; Vesala T
    Nature; 2008 Jan; 451(7174):49-52. PubMed ID: 18172494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A test of the optimality approach to modelling canopy properties and CO2 uptake by natural vegetation.
    Schymanski SJ; Roderick ML; Sivapalan M; Hutley LB; Beringer J
    Plant Cell Environ; 2007 Dec; 30(12):1586-98. PubMed ID: 17927696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arctic mosses govern below-ground environment and ecosystem processes.
    Gornall JL; Jónsdóttir IS; Woodin SJ; Van der Wal R
    Oecologia; 2007 Oct; 153(4):931-41. PubMed ID: 17618466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea.
    Perez-Martin A; Flexas J; Ribas-Carbó M; Bota J; Tomás M; Infante JM; Diaz-Espejo A
    J Exp Bot; 2009; 60(8):2391-405. PubMed ID: 19457982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [CO2-exchange in tundra ecosystems of Vaygach Island during the unusually warm and dry vegetation season].
    Zamolodchikov DG
    Zh Obshch Biol; 2015; 76(2):83-98. PubMed ID: 25985484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).
    Ueyama M; Iwata H; Harazono Y; Euskirchen ES; Oechel WC; Zona D
    Ecol Appl; 2013 Dec; 23(8):1798-816. PubMed ID: 24555310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle.
    Sturtevant CS; Oechel WC
    Glob Chang Biol; 2013 Sep; 19(9):2853-66. PubMed ID: 23649775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential allocation of carbon in mosses and grasses governs ecosystem sequestration: a 13C tracer study in the high Arctic.
    Woodin SJ; van der Wal R; Sommerkorn M; Gornall JL
    New Phytol; 2009 Dec; 184(4):944-9. PubMed ID: 19754640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest.
    Cai T; Flanagan LB; Jassal RS; Black TA
    Plant Cell Environ; 2008 Apr; 31(4):435-53. PubMed ID: 18182019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of stand-level leaf area for boreal bryophytes.
    Bond-Lamberty B; Gower ST
    Oecologia; 2007 Apr; 151(4):584-92. PubMed ID: 17160690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil water balance and ecosystem response to climate change.
    Porporato A; Daly E; Rodriguez-Iturbe I
    Am Nat; 2004 Nov; 164(5):625-32. PubMed ID: 15540152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of amoeboid protists and the microbial community in moss-rich terrestrial ecosystems: biogeochemical implications for the carbon budget and carbon cycle, especially at higher latitudes.
    Anderson OR
    J Eukaryot Microbiol; 2008; 55(3):145-50. PubMed ID: 18460151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecophysiological analysis of moss-dominated biological soil crusts and their separate components from the Succulent Karoo, South Africa.
    Weber B; Graf T; Bass M
    Planta; 2012 Jul; 236(1):129-39. PubMed ID: 22278609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward synthesis of relationships among leaf longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests.
    Kikuzawa K; Lechowicz MJ
    Am Nat; 2006 Sep; 168(3):373-83. PubMed ID: 16947112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defrosting the carbon freezer of the north.
    Stokstad E
    Science; 2004 Jun; 304(5677):1618-20. PubMed ID: 15192214
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.