BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 17728063)

  • 1. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.
    Dutra AJ; Rocha GP; Pombo FR
    J Hazard Mater; 2008 Apr; 152(2):648-55. PubMed ID: 17728063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries.
    Agrawal A; Sahu KK
    J Hazard Mater; 2009 Nov; 171(1-3):61-75. PubMed ID: 19632040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of a synthetic solution of galvanization effluent via the conversion of sodium cyanide into an insoluble safe complex.
    Ismail I; Abdel-Monem N; Fateen SE; Abdelazeem W
    J Hazard Mater; 2009 Jul; 166(2-3):978-83. PubMed ID: 19135781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on solvent extraction of copper and cyanide from waste cyanide solution.
    Xie F; Dreisinger D
    J Hazard Mater; 2009 Sep; 169(1-3):333-8. PubMed ID: 19394141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanide in industrial wastewaters and its removal: a review on biotreatment.
    Dash RR; Gaur A; Balomajumder C
    J Hazard Mater; 2009 Apr; 163(1):1-11. PubMed ID: 18657360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of cyanide effluents by oxidation and adsorption in batch and column studies.
    Yazici EY; Deveci H; Alp I
    J Hazard Mater; 2009 Jul; 166(2-3):1362-6. PubMed ID: 19153009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological removal of cyanide compounds from electroplating wastewater (EPWW) by sequencing batch reactor (SBR) system.
    Sirianuntapiboon S; Chairattanawan K; Rarunroeng M
    J Hazard Mater; 2008 Jun; 154(1-3):526-34. PubMed ID: 18054163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41.
    Algarra M; Jiménez MV; Rodríguez-Castellón E; Jiménez-López A; Jiménez-Jiménez J
    Chemosphere; 2005 May; 59(6):779-86. PubMed ID: 15811406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The behavior of organic components in copper recovery from electroless plating bath effluents using 3D electrode systems.
    Orhan G; Gürmen S; Timur S
    J Hazard Mater; 2004 Aug; 112(3):261-7. PubMed ID: 15302447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.
    Hunsom M; Pruksathorn K; Damronglerd S; Vergnes H; Duverneuil P
    Water Res; 2005 Feb; 39(4):610-6. PubMed ID: 15707634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.
    Sousa FW; Sousa MJ; Oliveira IR; Oliveira AG; Cavalcante RM; Fechine PB; Neto VO; de Keukeleire D; Nascimento RF
    J Environ Manage; 2009 Aug; 90(11):3340-4. PubMed ID: 19535200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.
    Silva MA; Mater L; Souza-Sierra MM; Corrêa AX; Sperb R; Radetski CM
    J Hazard Mater; 2007 Aug; 147(3):986-90. PubMed ID: 17331640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation.
    Adhoum N; Monser L; Bellakhal N; Belgaied JE
    J Hazard Mater; 2004 Aug; 112(3):207-13. PubMed ID: 15302441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.
    Peng C; Liu Y; Bi J; Xu H; Ahmed AS
    J Hazard Mater; 2011 May; 189(3):814-20. PubMed ID: 21466914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the catalytic films formed on stainless steel anodes employed for the electrochemical treatment of cuprocyanide wastewaters.
    Szpyrkowicz L; Ricci F; Montemor MF; Souto RM
    J Hazard Mater; 2005 Mar; 119(1-3):145-52. PubMed ID: 15752859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrolytic recovery of dilute copper from a mixed industrial effluent of high strength COD.
    Chellammal S; Raghu S; Kalaiselvi P; Subramanian G
    J Hazard Mater; 2010 Aug; 180(1-3):91-7. PubMed ID: 20434836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Removal of Cyanide and Heavy Metals from an Industrial Electroplating Stream Using Calcium Alginate Hydrogels.
    Pérez-Cid B; Calvar S; Moldes AB; Manuel Cruz J
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33171849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity assessment of heavy metal mixtures by Lemna minor L.
    Horvat T; Vidaković-Cifrek Z; Orescanin V; Tkalec M; Pevalek-Kozlina B
    Sci Total Environ; 2007 Oct; 384(1-3):229-38. PubMed ID: 17610935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning.
    Vegliò F; Quaresima R; Fornari P; Ubaldini S
    Waste Manag; 2003; 23(3):245-52. PubMed ID: 12737966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of cyanide in aqueous solution by chemical and photochemical process.
    Sarla M; Pandit M; Tyagi DK; Kapoor JC
    J Hazard Mater; 2004 Dec; 116(1-2):49-56. PubMed ID: 15561362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.