BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 17728264)

  • 1. Action outcomes are represented in human inferior frontoparietal cortex.
    Hamilton AF; Grafton ST
    Cereb Cortex; 2008 May; 18(5):1160-8. PubMed ID: 17728264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of inferior frontal and parietal areas in differentiating meaningful and meaningless object-directed actions.
    Newman-Norlund R; van Schie HT; van Hoek ME; Cuijpers RH; Bekkering H
    Brain Res; 2010 Feb; 1315():63-74. PubMed ID: 19968969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do we infer others' goals from non-stereotypic actions? The outcome of context-sensitive inferential processing in right inferior parietal and posterior temporal cortex.
    Liepelt R; Von Cramon DY; Brass M
    Neuroimage; 2008 Dec; 43(4):784-92. PubMed ID: 18773963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymodal conceptual processing of human biological actions in the left inferior frontal lobe.
    Baumgaertner A; Buccino G; Lange R; McNamara A; Binkofski F
    Eur J Neurosci; 2007 Feb; 25(3):881-9. PubMed ID: 17298597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations.
    Rizzolatti G; Sinigaglia C
    Nat Rev Neurosci; 2010 Apr; 11(4):264-74. PubMed ID: 20216547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do simple intransitive finger movements consistently activate frontoparietal mirror neuron areas in humans?
    Jonas M; Siebner HR; Biermann-Ruben K; Kessler K; Bäumer T; Büchel C; Schnitzler A; Münchau A
    Neuroimage; 2007; 36 Suppl 2():T44-53. PubMed ID: 17499169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From 'acting on' to 'acting with': the functional anatomy of object-oriented action schemata.
    Johnson SH; Grafton ST
    Prog Brain Res; 2003; 142():127-39. PubMed ID: 12693258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intention, action planning, and decision making in parietal-frontal circuits.
    Andersen RA; Cui H
    Neuron; 2009 Sep; 63(5):568-83. PubMed ID: 19755101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An fMRI approach to particularize the frontoparietal network for visuomotor action monitoring: Detection of incongruence between test subjects' actions and resulting perceptions.
    Schnell K; Heekeren K; Schnitker R; Daumann J; Weber J; Hesselmann V; Möller-Hartmann W; Thron A; Gouzoulis-Mayfrank E
    Neuroimage; 2007 Jan; 34(1):332-41. PubMed ID: 17046287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observing complex action sequences: The role of the fronto-parietal mirror neuron system.
    Molnar-Szakacs I; Kaplan J; Greenfield PM; Iacoboni M
    Neuroimage; 2006 Nov; 33(3):923-35. PubMed ID: 16997576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analysis of parieto-frontal cognitive-motor networks.
    Averbeck BB; Battaglia-Mayer A; Guglielmo C; Caminiti R
    J Neurophysiol; 2009 Sep; 102(3):1911-20. PubMed ID: 19625537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional segregation within pars opercularis of the inferior frontal gyrus: evidence from fMRI studies of imitation and action observation.
    Molnar-Szakacs I; Iacoboni M; Koski L; Mazziotta JC
    Cereb Cortex; 2005 Jul; 15(7):986-94. PubMed ID: 15513929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mirror neuron system is more active during complementary compared with imitative action.
    Newman-Norlund RD; van Schie HT; van Zuijlen AM; Bekkering H
    Nat Neurosci; 2007 Jul; 10(7):817-8. PubMed ID: 17529986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
    Saygin AP; Sereno MI
    Cereb Cortex; 2008 Sep; 18(9):2158-68. PubMed ID: 18234687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parietal lobe: from action organization to intention understanding.
    Fogassi L; Ferrari PF; Gesierich B; Rozzi S; Chersi F; Rizzolatti G
    Science; 2005 Apr; 308(5722):662-7. PubMed ID: 15860620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of cortical areas during performance of a catching ball task.
    Machado S; Cunha M; Portella CE; Silva JG; Velasques B; Bastos VH; Budde H; Pompeu F; Basile L; Cagy M; Piedade R; Ribeiro P
    Neurosci Lett; 2008 Nov; 446(1):7-10. PubMed ID: 18822348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neural basis for simulated drawing and the semantic implications.
    Harrington GS; Farias D; Davis CH
    Cortex; 2009 Mar; 45(3):386-93. PubMed ID: 19111291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurofunctional modulation of brain regions by the observation of pointing and grasping actions.
    Pierno AC; Tubaldi F; Turella L; Grossi P; Barachino L; Gallo P; Castiello U
    Cereb Cortex; 2009 Feb; 19(2):367-74. PubMed ID: 18534989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective attention modulates inferior frontal gyrus activity during action observation.
    Chong TT; Williams MA; Cunnington R; Mattingley JB
    Neuroimage; 2008 Mar; 40(1):298-307. PubMed ID: 18178107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory-motor and cognitive functions of the human posterior parietal cortex involved in manual actions.
    Creem-Regehr SH
    Neurobiol Learn Mem; 2009 Feb; 91(2):166-71. PubMed ID: 18996216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.