BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17728380)

  • 1. A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice.
    Just A; Arendshorst WJ
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1489-500. PubMed ID: 17728380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced autoregulatory effectiveness in adenosine 1 receptor-deficient mice.
    Hashimoto S; Huang Y; Briggs J; Schnermann J
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F888-91. PubMed ID: 16263804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic characteristics and underlying mechanisms of renal blood flow autoregulation in the conscious dog.
    Just A; Ehmke H; Toktomambetova L; Kirchheim HR
    Am J Physiol Renal Physiol; 2001 Jun; 280(6):F1062-71. PubMed ID: 11352846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation of renal blood flow in the conscious dog and the contribution of the tubuloglomerular feedback.
    Just A; Wittmann U; Ehmke H; Kirchheim HR
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):275-90. PubMed ID: 9481688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation.
    Just A; Arendshorst WJ
    Am J Physiol Regul Integr Comp Physiol; 2003 Sep; 285(3):R619-31. PubMed ID: 12791588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC.
    Grifoni SC; Chiposi R; McKey SE; Ryan MJ; Drummond HA
    Am J Physiol Renal Physiol; 2010 Feb; 298(2):F285-92. PubMed ID: 19889952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback.
    Just A; Arendshorst WJ
    J Physiol; 2005 Dec; 569(Pt 3):959-74. PubMed ID: 16223765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of renal blood flow autoregulation: dynamics and contributions.
    Just A
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R1-17. PubMed ID: 16990493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between renal interstitial ATP concentrations and autoregulation-mediated changes in renal vascular resistance.
    Nishiyama A; Majid DS; Taher KA; Miyatake A; Navar LG
    Circ Res; 2000 Mar; 86(6):656-62. PubMed ID: 10747001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice.
    Vallon V; Richter K; Huang DY; Rieg T; Schnermann J
    Pflugers Arch; 2004 May; 448(2):214-21. PubMed ID: 14767772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS.
    Dautzenberg M; Keilhoff G; Just A
    J Physiol; 2011 Oct; 589(Pt 19):4731-44. PubMed ID: 21825026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal interstitial atp responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity.
    Nishiyama A; Majid DS; Walker M; Miyatake A; Navar LG
    Hypertension; 2001 Feb; 37(2 Pt 2):753-9. PubMed ID: 11230369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
    Oien AH; Aukland K
    Acta Physiol Scand; 1991 Sep; 143(1):71-92. PubMed ID: 1957708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of renal autoregulation.
    Cupples WA; Braam B
    Am J Physiol Renal Physiol; 2007 Apr; 292(4):F1105-23. PubMed ID: 17229679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tubuloglomerular feedback dependence of autoregulation in rat juxtamedullary afferent arterioles.
    Moore LC; Casellas D
    Kidney Int; 1990 Jun; 37(6):1402-8. PubMed ID: 2362399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors.
    Sun D; Samuelson LC; Yang T; Huang Y; Paliege A; Saunders T; Briggs J; Schnermann J
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9983-8. PubMed ID: 11504952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced tubuloglomerular feedback in mice with vascular overexpression of A1 adenosine receptors.
    Oppermann M; Qin Y; Lai EY; Eisner C; Li L; Huang Y; Mizel D; Fryc J; Wilcox CS; Briggs J; Schnermann J; Castrop H
    Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1256-64. PubMed ID: 19741017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal blood flow and dynamic autoregulation in conscious mice.
    Iliescu R; Cazan R; McLemore GR; Venegas-Pont M; Ryan MJ
    Am J Physiol Renal Physiol; 2008 Sep; 295(3):F734-40. PubMed ID: 18579706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal autoregulation: models combining tubuloglomerular feedback and myogenic response.
    Aukland K; Oien AH
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F768-83. PubMed ID: 3565585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.