These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 17728446)
21. Tegula function during free locust flight in relation to motor pattern, flight speed and aerodynamic output. Fischer H; Ebert E J Exp Biol; 1999 Mar; 202 (Pt 6)():711-21. PubMed ID: 10021324 [TBL] [Abstract][Full Text] [Related]
22. Sensory vestibular contributions to constructing internal models of self-motion. Green AM; Shaikh AG; Angelaki DE J Neural Eng; 2005 Sep; 2(3):S164-79. PubMed ID: 16135882 [TBL] [Abstract][Full Text] [Related]
23. Coupling the neural and physical dynamics in rhythmic movements. Hatsopoulos NG Neural Comput; 1996 Apr; 8(3):567-81. PubMed ID: 8868568 [TBL] [Abstract][Full Text] [Related]
24. Reorganization of sensory regulation of locust flight after partial deafferentation. Büschges A; Ramirez JM; Pearson KG J Neurobiol; 1992 Feb; 23(1):31-43. PubMed ID: 1564454 [TBL] [Abstract][Full Text] [Related]
25. Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. Ahissar E; Kleinfeld D Cereb Cortex; 2003 Jan; 13(1):53-62. PubMed ID: 12466215 [TBL] [Abstract][Full Text] [Related]
26. Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Kondoh Y; Okuma J; Newland PL J Neurophysiol; 1995 May; 73(5):1829-42. PubMed ID: 7623084 [TBL] [Abstract][Full Text] [Related]
27. Defense reaction in the pond snail Planorbis corneus. II. Central pattern generator. Arshavsky YI; Deliagina TG; Okshtein IL; Orlovsky GN; Panchin YV; Popova LB J Neurophysiol; 1994 Mar; 71(3):891-7. PubMed ID: 8201429 [TBL] [Abstract][Full Text] [Related]
28. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications. Rigosa J; Weber DJ; Prochazka A; Stein RB; Micera S J Neural Eng; 2011 Aug; 8(4):046019. PubMed ID: 21701057 [TBL] [Abstract][Full Text] [Related]
29. Circuit feedback increases activity level of a circuit input through interactions with intrinsic properties. Blitz DM J Neurophysiol; 2017 Aug; 118(2):949-963. PubMed ID: 28469000 [TBL] [Abstract][Full Text] [Related]
30. Manually controlled human balancing using visual, vestibular and proprioceptive senses involves a common, low frequency neural process. Lakie M; Loram ID J Physiol; 2006 Nov; 577(Pt 1):403-16. PubMed ID: 16959857 [TBL] [Abstract][Full Text] [Related]
32. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat. Baev KV; Esipenko VB; Shimansky YP Neuroscience; 1991; 40(1):239-56. PubMed ID: 2052152 [TBL] [Abstract][Full Text] [Related]
33. A comparison of resonance tuning with positive versus negative sensory feedback. Williams CA; DeWeerth SP Biol Cybern; 2007 Jun; 96(6):603-14. PubMed ID: 17404751 [TBL] [Abstract][Full Text] [Related]
34. Proprioceptive feedback in locust kicking and jumping during maturation. Norman AP J Comp Physiol A; 1996 Aug; 179(2):195-205. PubMed ID: 8765558 [TBL] [Abstract][Full Text] [Related]
35. Rigidity and Flexibility: The Central Basis of Inter-Leg Coordination in the Locust. Knebel D; Ayali A; Pflüger HJ; Rillich J Front Neural Circuits; 2016; 10():112. PubMed ID: 28123358 [TBL] [Abstract][Full Text] [Related]
36. The locust tegula: kinematic parameters and activity pattern during the wing stroke. Fischer H; Wolf H; Büschges A J Exp Biol; 2002 Jun; 205(Pt 11):1531-45. PubMed ID: 12000799 [TBL] [Abstract][Full Text] [Related]
37. Timing of bimanual movements and deafferentation: implications for the role of sensory movement effects. Drewing K; Stenneken P; Cole J; Prinz W; Aschersleben G Exp Brain Res; 2004 Sep; 158(1):50-7. PubMed ID: 15007586 [TBL] [Abstract][Full Text] [Related]
38. The locust frontal ganglion: a multi-tasked central pattern generator. Ayali A; Zilberstein Y Acta Biol Hung; 2004; 55(1-4):129-35. PubMed ID: 15270226 [TBL] [Abstract][Full Text] [Related]
39. Cortical networks for control of voluntary arm movements under variable force conditions. Bullock D; Cisek P; Grossberg S Cereb Cortex; 1998; 8(1):48-62. PubMed ID: 9510385 [TBL] [Abstract][Full Text] [Related]
40. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation. Rebesco JM; Miller LE Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]