These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 17728446)
41. Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. Newland PL; Kondoh Y J Neurophysiol; 1997 Apr; 77(4):1731-46. PubMed ID: 9114232 [TBL] [Abstract][Full Text] [Related]
42. Proprioceptors monitoring forces in a locust hind leg during kicking form negative feedback loops with flexor tibiae motor neurons. Sasaki K; Burrows M J Exp Biol; 2003 Feb; 206(Pt 4):759-69. PubMed ID: 12517992 [TBL] [Abstract][Full Text] [Related]
43. Computational principles of movement neuroscience. Wolpert DM; Ghahramani Z Nat Neurosci; 2000 Nov; 3 Suppl():1212-7. PubMed ID: 11127840 [TBL] [Abstract][Full Text] [Related]
44. Adaptive motor control in crayfish. Cattaert D; Le Ray D Prog Neurobiol; 2001 Feb; 63(2):199-240. PubMed ID: 11124446 [TBL] [Abstract][Full Text] [Related]
45. "Proprioceptive signature" of cursive writing in humans: a multi-population coding. Roll JP; Albert F; Ribot-Ciscar E; Bergenheim M Exp Brain Res; 2004 Aug; 157(3):359-68. PubMed ID: 15007582 [TBL] [Abstract][Full Text] [Related]
46. A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model. Latash ML; Shim JK; Smilga AV; Zatsiorsky VM Biol Cybern; 2005 Mar; 92(3):186-91. PubMed ID: 15739110 [TBL] [Abstract][Full Text] [Related]
47. Coupling sensory inputs to the appropriate motor responses: new aspects of cerebellar function. Manzoni D; Andre P; Bruschini L Arch Ital Biol; 2004 May; 142(3):199-215. PubMed ID: 15260377 [TBL] [Abstract][Full Text] [Related]
48. Neuronal network models of phase separation between limb CPGs of digging sand crabs. Hodge A; Edwards R; Paul DH; van den Driessche P Biol Cybern; 2006 Jul; 95(1):55-68. PubMed ID: 16673144 [TBL] [Abstract][Full Text] [Related]
49. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation. Büschges A; Ramirez JM; Driesang R; Pearson KG J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440 [TBL] [Abstract][Full Text] [Related]
50. Measuring direction in the coupling of biological oscillators: a case study for electroreceptors of paddlefish. Brea J; Russell DF; Neiman AB Chaos; 2006 Jun; 16(2):026111. PubMed ID: 16822043 [TBL] [Abstract][Full Text] [Related]
51. Schema-based learning of adaptable and flexible prey-catching in anurans I. The basic architecture. Corbacho F; Nishikawa KC; Weerasuriya A; Liaw JS; Arbib MA Biol Cybern; 2005 Dec; 93(6):391-409. PubMed ID: 16292659 [TBL] [Abstract][Full Text] [Related]
52. Not by spikes alone: responses of coordinating neurons and the swimmeret system to local differences in excitation. Mulloney B; Hall WM J Neurophysiol; 2007 Jan; 97(1):436-50. PubMed ID: 17050832 [TBL] [Abstract][Full Text] [Related]
53. Network feedback regulates motor output across a range of modulatory neuron activity. Spencer RM; Blitz DM J Neurophysiol; 2016 Jun; 115(6):3249-63. PubMed ID: 27030739 [TBL] [Abstract][Full Text] [Related]
54. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. Akay T; Büschges A J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989 [TBL] [Abstract][Full Text] [Related]
55. Sensory pathways and their modulation in the control of locomotion. Büschges A; Manira AE Curr Opin Neurobiol; 1998 Dec; 8(6):733-9. PubMed ID: 9914236 [TBL] [Abstract][Full Text] [Related]
56. Mechanisms underlying fictive feeding in aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron. Susswein AJ; Hurwitz I; Thorne R; Byrne JH; Baxter DA J Neurophysiol; 2002 May; 87(5):2307-23. PubMed ID: 11976370 [TBL] [Abstract][Full Text] [Related]
57. Oscillatory neural networks. Selverston AI; Moulins M Annu Rev Physiol; 1985; 47():29-48. PubMed ID: 2986532 [TBL] [Abstract][Full Text] [Related]
58. Distal versus proximal inhibitory shaping of feedback excitation in the electrosensory lateral line lobe: implications for sensory filtering. Berman NJ; Maler L J Neurophysiol; 1998 Dec; 80(6):3214-32. PubMed ID: 9862917 [TBL] [Abstract][Full Text] [Related]
59. Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial. Bagaianu D; Van Tiggelen D; Duvigneaud N; Stevens V; Schroyen D; Vissenaeken D; D'Hondt G; Pitance L Mil Med; 2017 Sep; 182(9):e1969-e1975. PubMed ID: 28885964 [TBL] [Abstract][Full Text] [Related]
60. Basal ganglia as a sensory gating devise for motor control. Kaji R J Med Invest; 2001 Aug; 48(3-4):142-6. PubMed ID: 11694953 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]