These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 17728754)

  • 21. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea.
    Brocks JJ; Love GD; Summons RE; Knoll AH; Logan GA; Bowden SA
    Nature; 2005 Oct; 437(7060):866-70. PubMed ID: 16208367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
    Planavsky NJ; Reinhard CT; Wang X; Thomson D; McGoldrick P; Rainbird RH; Johnson T; Fischer WW; Lyons TW
    Science; 2014 Oct; 346(6209):635-8. PubMed ID: 25359975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence from massive siderite beds for a CO2-rich atmosphere before approximately 1.8 billion years ago.
    Ohmoto H; Watanabe Y; Kumazawa K
    Nature; 2004 May; 429(6990):395-9. PubMed ID: 15164058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The continuing puzzle of the great oxidation event.
    Sessions AL; Doughty DM; Welander PV; Summons RE; Newman DK
    Curr Biol; 2009 Jul; 19(14):R567-74. PubMed ID: 19640495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atmospheric oxygenation three billion years ago.
    Crowe SA; Døssing LN; Beukes NJ; Bau M; Kruger SJ; Frei R; Canfield DE
    Nature; 2013 Sep; 501(7468):535-8. PubMed ID: 24067713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 200-million-year delay in permanent atmospheric oxygenation.
    Poulton SW; Bekker A; Cumming VM; Zerkle AL; Canfield DE; Johnston DT
    Nature; 2021 Apr; 592(7853):232-236. PubMed ID: 33782617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The rise of atmospheric oxygen.
    Kump LR
    Nature; 2008 Jan; 451(7176):277-8. PubMed ID: 18202642
    [No Abstract]   [Full Text] [Related]  

  • 30. Oxygen produced by cyanobacteria in simulated Archaean conditions partly oxidizes ferrous iron but mostly escapes-conclusions about early evolution.
    Rantamäki S; Meriluoto J; Spoof L; Puputti EM; Tyystjärvi T; Tyystjärvi E
    Photosynth Res; 2016 Dec; 130(1-3):103-111. PubMed ID: 26895438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation.
    Bao H; Lyons JR; Zhou C
    Nature; 2008 May; 453(7194):504-6. PubMed ID: 18497821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago.
    Bindeman IN; Zakharov DO; Palandri J; Greber ND; Dauphas N; Retallack GJ; Hofmann A; Lackey JS; Bekker A
    Nature; 2018 May; 557(7706):545-548. PubMed ID: 29795252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eocene bipolar glaciation associated with global carbon cycle changes.
    Tripati A; Backman J; Elderfield H; Ferretti P
    Nature; 2005 Jul; 436(7049):341-6. PubMed ID: 16034408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ordovician paleosols at Arisaig, Nova Scotia, and the evolution of the atmosphere.
    Feakes CR; Holland HD; Zbinden EA
    Catena Suppl; 1989; 16():207-32. PubMed ID: 11542236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Authigenic carbonate and the history of the global carbon cycle.
    Schrag DP; Higgins JA; Macdonald FA; Johnston DT
    Science; 2013 Feb; 339(6119):540-3. PubMed ID: 23372007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts.
    Robert F; Chaussidon M
    Nature; 2006 Oct; 443(7114):969-72. PubMed ID: 17066030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The rise of oxygen over the past 205 million years and the evolution of large placental mammals.
    Falkowski PG; Katz ME; Milligan AJ; Fennel K; Cramer BS; Aubry MP; Berner RA; Novacek MJ; Zapol WM
    Science; 2005 Sep; 309(5744):2202-4. PubMed ID: 16195457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Palaeoclimate: the riddle of the sediments.
    Siddall M
    Nature; 2005 Sep; 437(7055):39-41. PubMed ID: 16136118
    [No Abstract]   [Full Text] [Related]  

  • 39. Geological constraints on the origin of oxygenic photosynthesis.
    Farquhar J; Zerkle AL; Bekker A
    Photosynth Res; 2011 Jan; 107(1):11-36. PubMed ID: 20882345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A whiff of oxygen before the great oxidation event?
    Anbar AD; Duan Y; Lyons TW; Arnold GL; Kendall B; Creaser RA; Kaufman AJ; Gordon GW; Scott C; Garvin J; Buick R
    Science; 2007 Sep; 317(5846):1903-6. PubMed ID: 17901330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.