BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 17728756)

  • 1. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator.
    Ramírez SR; Gravendeel B; Singer RB; Marshall CR; Pierce NE
    Nature; 2007 Aug; 448(7157):1042-5. PubMed ID: 17728756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae).
    Gustafsson AL; Verola CF; Antonelli A
    BMC Evol Biol; 2010 Jun; 10():177. PubMed ID: 20546585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets.
    Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE
    Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asynchronous diversification in a specialized plant-pollinator mutualism.
    Ramírez SR; Eltz T; Fujiwara MK; Gerlach G; Goldman-Huertas B; Tsutsui ND; Pierce NE
    Science; 2011 Sep; 333(6050):1742-6. PubMed ID: 21940893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular phylogeny for the large African orchid genus Disa.
    Bytebier B; Bellstedt DU; Linder HP
    Mol Phylogenet Evol; 2007 Apr; 43(1):75-90. PubMed ID: 17081772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular phylogeny of Aerides (Orchidaceae) based on one nuclear and two plastid markers: a step forward in understanding the evolution of the Aeridinae.
    Kocyan A; Vogel EF; Conti E; Gravendeel B
    Mol Phylogenet Evol; 2008 Aug; 48(2):422-43. PubMed ID: 18571438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetics and biogeography of Mascarene angraecoid orchids (Vandeae, Orchidaceae).
    Micheneau C; Carlsward BS; Fay MF; Bytebier B; Pailler T; Chase MW
    Mol Phylogenet Evol; 2008 Mar; 46(3):908-22. PubMed ID: 18272406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Apostasia genome and the evolution of orchids.
    Zhang GQ; Liu KW; Li Z; Lohaus R; Hsiao YY; Niu SC; Wang JY; Lin YC; Xu Q; Chen LJ; Yoshida K; Fujiwara S; Wang ZW; Zhang YQ; Mitsuda N; Wang M; Liu GH; Pecoraro L; Huang HX; Xiao XJ; Lin M; Wu XY; Wu WL; Chen YY; Chang SB; Sakamoto S; Ohme-Takagi M; Yagi M; Zeng SJ; Shen CY; Yeh CM; Luo YB; Tsai WC; Van de Peer Y; Liu ZJ
    Nature; 2017 Sep; 549(7672):379-383. PubMed ID: 28902843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fossil bee from Early Cretaceous Burmese amber.
    Poinar GO; Danforth BN
    Science; 2006 Oct; 314(5799):614. PubMed ID: 17068254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary timescale of monocots determined by the fossilized birth-death model using a large number of fossil records.
    Eguchi S; Tamura MN
    Evolution; 2016 May; 70(5):1136-44. PubMed ID: 27061096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation in the Orchidaceae: confronting the challenges.
    Peakall R
    Mol Ecol; 2007 Jul; 16(14):2834-7. PubMed ID: 17614897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollinators underestimated: a molecular phylogeny reveals widespread floral convergence in oil-secreting orchids (sub-tribe Coryciinae) of the Cape of South Africa.
    Waterman RJ; Pauw A; Barraclough TG; Savolainen V
    Mol Phylogenet Evol; 2009 Apr; 51(1):100-10. PubMed ID: 18586527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the fossil record to estimate the age of the last common ancestor of extant primates.
    Tavaré S; Marshall CR; Will O; Soligo C; Martin RD
    Nature; 2002 Apr; 416(6882):726-9. PubMed ID: 11961552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae.
    Cameron KM
    Mol Phylogenet Evol; 2004 Jun; 31(3):1157-80. PubMed ID: 15120407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epiphytism and pollinator specialization: drivers for orchid diversity?
    Gravendeel B; Smithson A; Slik FJ; Schuiteman A
    Philos Trans R Soc Lond B Biol Sci; 2004 Oct; 359(1450):1523-35. PubMed ID: 15519970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of above- and belowground mutualisms on orchid speciation and coexistence.
    Waterman RJ; Bidartondo MI; Stofberg J; Combs JK; Gebauer G; Savolainen V; Barraclough TG; Pauw A
    Am Nat; 2011 Feb; 177(2):E54-68. PubMed ID: 21460551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MADS about the evolution of orchid flowers.
    Mondragón-Palomino M; Theissen G
    Trends Plant Sci; 2008 Feb; 13(2):51-9. PubMed ID: 18262819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for reproductive isolate selection in Mediterranean orchids: karyotype differences compensate for the lack of pollinator specificity.
    Cozzolino S; D'Emerico S; Widmer A
    Proc Biol Sci; 2004 Aug; 271 Suppl 5(Suppl 5):S259-62. PubMed ID: 15503988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deception above, deception below: linking pollination and mycorrhizal biology of orchids.
    Waterman RJ; Bidartondo MI
    J Exp Bot; 2008; 59(5):1085-96. PubMed ID: 18316318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using fossils and molecular data to reveal the origins of the Cape proteas (subfamily Proteoideae).
    Sauquet H; Weston PH; Barker NP; Anderson CL; Cantrill DJ; Savolainen V
    Mol Phylogenet Evol; 2009 Apr; 51(1):31-43. PubMed ID: 19135535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.