These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17728826)

  • 1. Encircled energy in systems with truncated-Gaussian apertures of different Fresnel numbers. I. Generalization of the Q2n function of E. Wolf and the Yn function of H. H. Hopkins.
    Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):2023-32. PubMed ID: 17728826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encircled energy for systems with truncated-Gaussian apertures of different Fresnel numbers. II. Maximizing beam energy concentration on a target.
    Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):2033-42. PubMed ID: 17728827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation equation of Hermite-Gauss beams through a complex optical system with apertures and its application to focal shift.
    Peng S; Jin G; Tingfeng W
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jul; 30(7):1381-6. PubMed ID: 24323153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encircled energy for systems with centrally obscured circular pupils.
    Stamnes JJ; Heier H; Ljunggren S
    Appl Opt; 1982 May; 21(9):1628-33. PubMed ID: 20389908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional intensity distribution in the far zone of focused fields in systems with different Fresnel numbers.
    Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2023 Dec; 40(12):2197-2204. PubMed ID: 38086028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation equation of Gaussian beams through apertured focusing systems and parametric study of focal shift.
    Sun P; Liu J; Guan J; Wang G; Yu Y
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):818-825. PubMed ID: 31045009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansions for irradiance distribution near the focus in systems of different Fresnel numbers.
    Li Y
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):730-40. PubMed ID: 16539072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of diffraction of vortex beams from structured apertures and generation of elegant elliptical vortex Hermite-Gaussian beams.
    Hebri D; Rasouli S; Dezfouli AM
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):839-852. PubMed ID: 31045012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes through complex ABCD optical systems.
    Hanson SG; Wang W; Jakobsen ML; Takeda M
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2338-46. PubMed ID: 18758562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric study of apertured focused gaussian beams.
    Holmes DA; Korka JE; Avizonis PV
    Appl Opt; 1972 Mar; 11(3):565-74. PubMed ID: 20111549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focal shift and concept of effective Fresnel number for a Gaussian laser beam.
    Carter WH
    Appl Opt; 1982 Jun; 21(11):1989-94. PubMed ID: 20389983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Jinc functions and their application to focusing and diffraction of circular apertures.
    Cao Q
    J Opt Soc Am A Opt Image Sci Vis; 2003 Apr; 20(4):661-7. PubMed ID: 12683492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized huygens-fresnel diffraction integral for misaligned asymmetric first-order optical systems and decentered anisotropic Gaussian Schell-model beams.
    Ding G; Lü B
    J Opt Soc Am A Opt Image Sci Vis; 2002 Mar; 19(3):485-90. PubMed ID: 11876311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings.
    Janicijevic L; Topuzoski S
    J Opt Soc Am A Opt Image Sci Vis; 2008 Nov; 25(11):2659-69. PubMed ID: 18978843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple and effective method for the analytic description of important optical beams when truncated by finite apertures.
    Zamboni-Rached M; Recami E; Balma M
    Appl Opt; 2012 Jun; 51(16):3370-9. PubMed ID: 22695572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams.
    Urey H
    Appl Opt; 2004 Jan; 43(3):620-5. PubMed ID: 14765922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrical representation of Gaussian beams propagating through complex paraxial optical systems.
    Andrews LC; Miller WB; Ricklin JC
    Appl Opt; 1993 Oct; 32(30):5918-29. PubMed ID: 20856413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniform asymptotics of paraxial boundary diffraction waves.
    Borghi R
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):685-96. PubMed ID: 26366780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axial irradiance of a focused beam.
    Mahajan VN
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1814-23. PubMed ID: 16211808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized beam quality factor of aberrated truncated Gaussian laser beams: erratum.
    Mafusire C; Forbes A
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jun; 33(6):1111. PubMed ID: 27409437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.