These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Radiology image interpretation system: modified observer performance study of an image interpretation expert system. Piraino D; Richmond B; Schluchter M; Rockey D; Schils J J Digit Imaging; 1991 May; 4(2):94-101. PubMed ID: 2070008 [TBL] [Abstract][Full Text] [Related]
3. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. Matsuki Y; Nakamura K; Watanabe H; Aoki T; Nakata H; Katsuragawa S; Doi K AJR Am J Roentgenol; 2002 Mar; 178(3):657-63. PubMed ID: 11856693 [TBL] [Abstract][Full Text] [Related]
4. Diagnosis of focal bone lesions using neural networks. Reinus WR; Wilson AJ; Kalman B; Kwasny S Invest Radiol; 1994 Jun; 29(6):606-11. PubMed ID: 8088968 [TBL] [Abstract][Full Text] [Related]
5. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Wu Y; Giger ML; Doi K; Vyborny CJ; Schmidt RA; Metz CE Radiology; 1993 Apr; 187(1):81-7. PubMed ID: 8451441 [TBL] [Abstract][Full Text] [Related]
6. Effect of an artificial neural network on radiologists' performance in the differential diagnosis of interstitial lung disease using chest radiographs. Ashizawa K; MacMahon H; Ishida T; Nakamura K; Vyborny CJ; Katsuragawa S; Doi K AJR Am J Roentgenol; 1999 May; 172(5):1311-5. PubMed ID: 10227508 [TBL] [Abstract][Full Text] [Related]
7. Neural networks in radiologic diagnosis. II. Interpretation of neonatal chest radiographs. Gross GW; Boone JM; Greco-Hunt V; Greenberg B Invest Radiol; 1990 Sep; 25(9):1017-23. PubMed ID: 2211043 [TBL] [Abstract][Full Text] [Related]
8. Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pulmonary nodules by computed tomography. Chen H; Wang XH; Ma DQ; Ma BR Chin Med J (Engl); 2007 Jul; 120(14):1211-5. PubMed ID: 17697569 [TBL] [Abstract][Full Text] [Related]
9. [Accuracy of artificial neural networks in radiological differential diagnosis of solitary bone lesions]. Strotzer M; Krös P; Held P; Feuerbach S Rofo; 1995 Sep; 163(3):245-9. PubMed ID: 7548872 [TBL] [Abstract][Full Text] [Related]
10. Application of artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial SPECT bull's-eye images. Fujita H; Katafuchi T; Uehara T; Nishimura T J Nucl Med; 1992 Feb; 33(2):272-6. PubMed ID: 1732455 [TBL] [Abstract][Full Text] [Related]
11. Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network. Oda S; Awai K; Suzuki K; Yanaga Y; Funama Y; MacMahon H; Yamashita Y AJR Am J Roentgenol; 2009 Nov; 193(5):W397-402. PubMed ID: 19843717 [TBL] [Abstract][Full Text] [Related]
12. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer. Becker AS; Marcon M; Ghafoor S; Wurnig MC; Frauenfelder T; Boss A Invest Radiol; 2017 Jul; 52(7):434-440. PubMed ID: 28212138 [TBL] [Abstract][Full Text] [Related]
13. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Suzuki K; Doi K Acad Radiol; 2005 Oct; 12(10):1333-41. PubMed ID: 16179210 [TBL] [Abstract][Full Text] [Related]
14. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Devito KL; de Souza Barbosa F; Felippe Filho WN Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 Dec; 106(6):879-84. PubMed ID: 18718785 [TBL] [Abstract][Full Text] [Related]
15. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. Suzuki K; Li F; Sone S; Doi K IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352 [TBL] [Abstract][Full Text] [Related]
16. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). Suzuki K; Abe H; MacMahon H; Doi K IEEE Trans Med Imaging; 2006 Apr; 25(4):406-16. PubMed ID: 16608057 [TBL] [Abstract][Full Text] [Related]
17. Using machine learning to classify image features from canine pelvic radiographs: evaluation of partial least squares discriminant analysis and artificial neural network models. McEvoy FJ; Amigo JM Vet Radiol Ultrasound; 2013; 54(2):122-6. PubMed ID: 23228122 [TBL] [Abstract][Full Text] [Related]
18. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network. Wang L; Yang S; Yang S; Zhao C; Tian G; Gao Y; Chen Y; Lu Y World J Surg Oncol; 2019 Jan; 17(1):12. PubMed ID: 30621704 [TBL] [Abstract][Full Text] [Related]
19. Artificial neural networks and image interpretation: a ghost in the machine. Scott JA Semin Ultrasound CT MR; 2004 Oct; 25(5):396-403. PubMed ID: 15559122 [TBL] [Abstract][Full Text] [Related]
20. Interpretation of abnormal lumbosacral spine radiographs. A test comparing students, clinicians, radiology residents, and radiologists in medicine and chiropractic. Taylor JA; Clopton P; Bosch E; Miller KA; Marcelis S Spine (Phila Pa 1976); 1995 May; 20(10):1147-53; discussion 1154. PubMed ID: 7638657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]